Plasma Physics Reports

, Volume 28, Issue 11, pp 916–924 | Cite as

Asymmetric long-wavelength surface waves in magnetized plasma waveguides entirely filled with plasma

  • V. O. Girka
  • I. O. Girka
Plasma Oscillations and Waves


A theoretical study is made of the dispersion properties of electromagnetic surface waves with arbitrary azimuthal mode numbers and with a small axial wavenumber in cylindrical metal waveguides entirely filled with a radially inhomogeneous, cold, magnetized plasma. The frequency ranges in which the extraordinary polarized waves under analysis can exist are found, and the conditions for their resonant interaction with an ordinary bulk wave are determined. The eigenfrequency of these surface waves is investigated as a function of the plasma parameters, the axial wavenumber, and the azimuthal mode number. Simple analytic expressions are derived for the eigenfrequencies of the surface waves under study propagating in a homogeneous plasma waveguide.


Surface Wave Plasma Parameter Mode Number Dispersion Property Resonant Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma (Nauka, Moscow, 1990).Google Scholar
  2. 2.
    V. P. Silin, Parametric Action of High-Power Radiation on a Plasma (Nauka, Moscow, 1973).Google Scholar
  3. 3.
    A. N. Kondratenko, Surface and Bulk Waves in a Bounded Plasma (Énergoatomizdat, Moscow, 1985).Google Scholar
  4. 4.
    A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrocdynamics (Vysshaya Shkola, Moscow, 1988; Springer-Verlag, Berlin, 1984).Google Scholar
  5. 5.
    A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Oscillations and Waves in Plasma Media (Mosk. Gos. Univ., Moscow, 1990).Google Scholar
  6. 6.
    M. J. Ballico and R. C. Gross, Fusion Eng. Des. 12, 197 (1990).CrossRefGoogle Scholar
  7. 7.
    P. I. Markov, I. N. Onishchenko, G. V. Sotnikov, and Ya. B. Fainberg, Fiz. Plazmy 19, 3 (1993) [Plasma Phys. Rep. 19, 7 (1993)].ADSGoogle Scholar
  8. 8.
    M. V. Kuzelev, R. V. Romanov, I. A. Selivanov, et al., Tr. Inst. Obshch. Fiz. Ross. Akad. Nauk 45, 17 (1994).Google Scholar
  9. 9.
    J. Bernd, D. Grozevand, and H. Schluter, J. Phys. D 33, 877 (2000).ADSGoogle Scholar
  10. 10.
    N. A. Azarenkov, V. F. Klepikov, V. P. Olefir, and A. E. Sporov, Vestn. Khar’k. Univ., Ser. Fiz.: Yadra, Chastitsy, Polya, No. 1, 41 (2000).Google Scholar
  11. 11.
    E. P. Kurushin and E. I. Nefedov, Electrodynamics of Anisotropic Waveguide Structures (Nauka, Moscow, 1983).Google Scholar
  12. 12.
    N. N. Beletskii, A. A. Bulgakov, S. I. Khankina, and V. M. Yakovenko, Plasma Instabilities and Nonlinear Phenomena in Semiconductors (Naukova Dumka, Kiev, 1984).Google Scholar
  13. 13.
    Surface Waves in Plasmas and Solids, Ed. by S. Vukovic (World Scientific, Singapore, 1986).Google Scholar
  14. 14.
    V. A. Girka, I. A. Girka, A. N. Kondratenko, and V. I. Tkachenko, Radiotekh. Élektron. (Moscow) 34(2), 296 (1989) [Sov. J. Commun. Technol. Electron. 34 (4), 96 (1989)].Google Scholar
  15. 15.
    N. A. Azarenkov, A. N. Kondratenko, and K. N. Ostrikov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 36(5), 335 (1993).Google Scholar
  16. 16.
    V. A. Girka, I. A. Girka, V. P. Olefir, and V. I. Tkachenko, Pis’ma Zh. Tekh. Fiz. 17, 87 (1991) [Sov. Tech. Phys. Lett. 17, 35 (1991)].Google Scholar
  17. 17.
    V. A. Girka, I. A. Girka, and V. I. Tkachenko, Zh. Tekh. Fiz. 66(4), 114 (1996) [Tech. Phys. 41, 357 (1996)].Google Scholar
  18. 18.
    Microwave Discharges: Fundamentals and Applications, Ed. by C. M. Ferreira and M. Moisan (Plenum, New York, 1993), NATO ASI Ser., Ser. B: Phys., Vol. 302.Google Scholar
  19. 19.
    V. O. Girka, I. O. Girka, and I. V. Pavlenko, Contrib. Plasma Phys. 41(4), 393 (2001).CrossRefGoogle Scholar
  20. 20.
    S. Nonaka, Jpn. J. Appl. Phys. 33, 4226 (1994).CrossRefGoogle Scholar
  21. 21.
    M. Nagatsu, I. Ghanashev, and H. Sugai, Plasma Sources Sci. Technol. 7, 230 (1998).CrossRefADSGoogle Scholar
  22. 22.
    J. Margot-Chaker, M. Moisan, M. Chaker, et al., J. Appl. Phys. 66, 4134 (1989).CrossRefADSGoogle Scholar
  23. 23.
    I. Zhelyazkov and V. Atanassov, Phys. Rep. 255, 79 (1995).CrossRefADSGoogle Scholar
  24. 24.
    N. A. Azarenkov, V. P. Olefir, and A. E. Sporov, Phys. Scr. 63, 36 (2001).ADSGoogle Scholar
  25. 25.
    I. A. Girka and P. K. Kovtun, Zh. Tekh. Fiz. 68(12), 25 (1998) [Tech. Phys. 43 (12), 1424 (1998)].Google Scholar
  26. 26.
    B. A. Aronov, L. S. Bogdankevich, and A. A. Rukhadze, Zh. Tekh. Fiz. 43, 2493 (1973) [Sov. Phys. Tech. Phys. 18, 1569 (1973)].Google Scholar
  27. 27.
    E. Jahnke, F. Emde, and F. Losch, Tables of Higher Functions (McGraw-Hill, New York, 1960; Nauka, Moscow, 1977).Google Scholar
  28. 28.
    V. A. Girka, I. A, Girka, A. N. Kondratenko, and V. I. Tkachenko, Radiotekh. Élektron. (Moscow) 33(5), 1031 (1988) [Sov. J. Commun. Technol. Electron. 33 (8), 37 (1988)].ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • V. O. Girka
    • 1
  • I. O. Girka
    • 1
  1. 1.Karazin National UniversityKharkivUkraine

Personalised recommendations