Skip to main content
Log in

Laser diagnostics of ultrasonic outgassing of an insulating liquid

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The efficiency of hydrogen evolution from transformer oil into a vacuum and into air under normal pressure is studied for the case when the oil is exposed to focused ultrasonic radiation. The study is performed by the method of spectroscopy of biharmonic-pumping coherent anti-Stokes Raman scattering (CARS) based on stimulated Raman scattering (SRS). Ultrasonic radiation at a frequency of 1.76 MHz is excited by a spherical piezoceramic transducer mounted on the bottom of the vessel and is focused on the surface of the oil. This causes the intense stirring of the oil with the formation of a fountain. The room-temperature diffusion coefficient of hydrogen in the transformer oil, 10−7 m2/s, is found by approximating experimental data by a theoretical relationship for hydrogen evolution into air. It is shown that ultrasonic radiation with a power density of 2.2 kW/m2 accelerates diffusion processes ten-to fifteen-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Arakelyan, Élektrotekhnika, No. 2, 8 (1994).

  2. A. M. Bravikov, Élektr. Stn., No. 5, 25 (2001).

  3. V. I. Sharapov and M. A. Sivukhina, Élektr. Stn., No. 3, 23 (2001).

  4. B. G. Emets, Pis’ma Zh. Tekh. Fiz. 22(8), 22 (1996) [Tech. Phys. Lett. 22, 313 (1996)].

    Google Scholar 

  5. M. A. Margulis, Foundations of Sound Chemistry (Vysshaya Shkola, Moscow, 1984).

    Google Scholar 

  6. B. V. Ioffe, M. I. Kostkina, and A. G. Vitenberg, Zh. Prikl. Khim. 53, 2280 (1980).

    Google Scholar 

  7. V. V. Brazhnikov, Detectors for Chromatography (Vysshaya Shkola, Moscow, 1992).

    Google Scholar 

  8. S. A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in Spectroscopy of Light Scattering (Nauka, Moscow, 1981).

    Google Scholar 

  9. A. F. Bunkin and S. G. Ivanov, Kvantovaya Élektron. (Moscow) 9, 1821 (1982).

    Google Scholar 

  10. Gen. M. Mikheev, Geor. M. Mikheev, T. N. Mogileva, et al., Kvantovaya Élektron. (Moscow) 32, 39 (2002) [Quantum Electron. 32, 39 (2002)].

    Google Scholar 

  11. W. K. Bischel and M. J. Dyer, Phys. Rev. A 33, 3113 (1986).

    Article  ADS  Google Scholar 

  12. P. R. Regnier and J. P. E. Taran, Appl. Phys. Lett. 23, 240 (1973).

    Google Scholar 

  13. A. A. Ivanov, G. A. Polyakov, and V. B. Voronin, Izv. Akad. Nauk, Ser. Fiz. 57, 165 (1993).

    Google Scholar 

  14. A. A. Ivanov, Opt. Spektrosk. 80, 362 (1996) [Opt. Spectrosc. 80, 318 (1996)].

    ADS  Google Scholar 

  15. G. M. Mikheev and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 23, 943 (1996) [Quantum Electron. 26, 919 (1996)].

    Google Scholar 

  16. O. V. Rudenko, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 6, 18 (1996).

  17. L. A. Crum, J. Acoust. Soc. Am. 57, 1363 (1975).

    Article  ADS  Google Scholar 

  18. É. M. Agrest and G. N. Kuznetsov, Akust. Zh. 18, 168 (1972) [Sov. Phys. Acoust. 18, 143 (1972)].

    Google Scholar 

  19. T. V. Makarova and E. A. Gubernatorova, Acoustics and Ultrasonic Technology: Republican Interdepartmental Scientific and Technical Collection (Tekhnika, Kiev, 1991), No. 26, pp. 15–19.

    Google Scholar 

  20. V. G. Arakelyan, L. A. Dar’yan, and A. K. Lokhanin, Élektrichestvo, No. 5, 33 (1988).

  21. G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992).

    Google Scholar 

  22. Gen. M. Mikheev, Geor. M. Mikheev, G. P. Nekryachenko, and I. P. Gotlib, Pis’ma Zh. Tekh. Fiz. 24(1), 79 (1998) [Tech. Phys. Lett. 24, 36 (1998)].

    Google Scholar 

  23. R. M. Barrer, Diffusion in and through Solids (Cambridge University Press, Cambridge, 1941; Vysshaya Shkola, Moscow, 1984).

    Google Scholar 

  24. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, Properties of Gases and Liquids (McGraw-Hill, New York, 1977; Khimiya, Leningrad, 1982).

    Google Scholar 

  25. Geor. M. Mikheev, Gen. M. Mikheev, and V. K. Filippov, Élektr. Stn., No. 1, 39 (2001).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 10, 2002, pp. 73–78.

Original Russian Text Copyright © 2002 by Gen. Mikheev, Geor. Mikheev, Fateev, Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheev, G.M., Mikheev, G.M., Fateev, E.G. et al. Laser diagnostics of ultrasonic outgassing of an insulating liquid. Tech. Phys. 47, 1277–1282 (2002). https://doi.org/10.1134/1.1514808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1514808

Keywords

Navigation