Skip to main content
Log in

Dipole moment and mobility of molecules in nematic liquid crystals of the 4-n-butyl ester of [4′-n-hexyloxyphenyl] benzoic acid in the absence of external orienting fields

  • Polymers and Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Dielectric polarization was studied in a nematic liquid crystal of the 4-n-butyl ester of [4′-n-hexyloxyphenyl] benzoic acid (BE[HOP]BA) in the absence of external orienting fields in the isotropic and mesophase states in a frequency range of 103–107 Hz. In the isotropic melt, three regions of dielectric absorption of a relaxation origin were revealed. It is shown that two of them are related to a reorientation motion of individual molecules about the longitudinal axes (process I) and about the short axes (process II). Processes I and II have relaxation times τ ∼ 10−9 and 10−8 s and activation energies ΔU ∼ 16 and 23 kcal/mol, respectively; the energy of activation of process II in the liquid-crystal phase increases to ΔU ∼ 38 kcal/mol. In the isotropic melt, in addition to processes I and II, process III occurs in the low-frequency range, which is characterized by greater relaxation times τ ∼ 10−7 s and an activation energy ΔU ∼ 28 kcal/mol. In order to establish the nature of process III, temperature dependences of the dipole moments and Kirkwood correlation factor g were studied in both BE[HOP]BA phases. The magnitude of the Kirkwood factor in the isotropic phase of the BE[HOP]BA near the transition temperature from the mesomorphic state (g ∼ 0.88) indicates the retention of the orientational ordering of molecules of the low-molecular liquid crystal and the compensation of their dipole moments intrinsic to the liquid-crystal state. This circumstance suggests that the third process of the relaxation of dipole polarization is due to a cooperative mode of motion of molecules in mesophase nuclei in the isotropic melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liquid-Crystalline Polymers, Ed. by N. A. Platé (Khimiya, Moscow, 1988).

    Google Scholar 

  2. N. A. Platé and V. P. Shibaev, Comb-shaped Polymers and Liquid Crystals (Nauka, Moscow, 1980).

    Google Scholar 

  3. Molecular Dynamics and Theory of Broadband Spectroscopy, Ed. by M. Evans, G. J. Evans, W. T. Coffey, and P. Grigollini (Wiley, New York, 1982).

    Google Scholar 

  4. T. I. Borisova, T. P. Stepanova, Ya. S. Freïdzon, et al., Vysokomol. Soedin., Ser. A 30(8), 1754 (1988).

    Google Scholar 

  5. T. P. Stepanova, L. L. Burshtein, T. I. Borisova, and V. P. Shibaev, Vysokomol. Soedin., Ser. A 35(6), 658 (1993).

    Google Scholar 

  6. T. I. Borisova, L. L. Burshtein, N. A. Nikonorova, et al., Vysokomol. Soedin., Ser. A 40(1), 38 (1998).

    Google Scholar 

  7. T. P. Stepanova and L. L. Burshtein, Chin. J. Polym. Sci. 14(1), 1 (1996).

    Google Scholar 

  8. T. I. Borisova, L. L. Burshtein, T. P. Spepanova, et al., Vysokomol. Soedin., Ser. A 28(5), 1031 (1986); Vysokomol. Soedin., Ser. B 28 (9), 673 (1986).

    Google Scholar 

  9. T. I. Borisova, L. L. Burshtein, V. P. Malinovskaya, et al., Vysokomol. Soedin., Ser. B 32(6), 406 (1990).

    Google Scholar 

  10. J. Frenkel, J. Chem. Phys. 7(7), 538 (1939).

    Article  Google Scholar 

  11. T. I. Borisova, L. L. Burshtein, T. P. Stepanova, and N. A. Nikonorova, Int. J. Polym. Mater. 22, 103 (1993).

    Google Scholar 

  12. V. A. Usol’tseva, Zh. Vses. Khim. Ova. 28(2), 2 (1983).

    Google Scholar 

  13. T. P. Stepanova and L. L. Burshtein, USSR Inventor’s Certificate No. 1023233.

  14. A. I. Shatenshtein, E. A. Yakovleva, U. N. Zvyagintseva, Ya. M. Varshavskii, E. A. Izrailevich, and N. M. Dykhno, Isotopic Analysis of Water (Akad. Nauk SSSR, Moscow, 1957), Chap. 6, p. 86.

    Google Scholar 

  15. L. Onsager, J. Chem. Soc. 58, 1486 (1936).

    Google Scholar 

  16. M. V. Vol’kenshtein, Configurational Statistics of Polymeric Chains (Akad. Nauk SSSR, Moscow, 1959; Interscience, New York, 1963).

    Google Scholar 

  17. HyperChem(TM), Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.

  18. R. T. Kliingbiel, D. J. Genova, T. R. Criswell, and J. P. van Meter, J. Am. Chem. Soc. 96, 7651 (1974).

    Google Scholar 

  19. J. G. Kirkwood, J. Chem. Phys. 7, 911 (1939).

    Google Scholar 

  20. E. R. Gasilova, V. A. Shevelev, and S. Ya. Frenkel, Liq. Crys. 27(5), 573 (2000); 27 (5), 579 (2000).

    Google Scholar 

  21. V. N. Tsvetkov and E. I. Ryumtsev, Zh. Vses. Khim. O-va. 28(2), 94 (1983).

    Google Scholar 

  22. H. Kresse, J. Pietscher, H.-J. Deutscher, et al., Z. Phys. Chem. (Leipzig) 259(4), 779 (1978).

    Google Scholar 

  23. H. Kresse, Fortschr. Phys. 30(10), 507 (1982).

    Google Scholar 

  24. H. Kresse, A. Wiegeleben, and D. Demus, Cryst. Res. Technol. 15, 334 (1980).

    Google Scholar 

  25. H. Kresse and B. Gagejwska, Phys. Status Solidi A 64, 161 (1981).

    Google Scholar 

  26. H. Kresse, Adv. Liq. Cryst. 6, 109 (1983).

    Google Scholar 

  27. H. Kresse, H. Schmalfuss, B. Gestblom, et al., Liq. Cryst. 23, 891 (1997).

    Google Scholar 

  28. M. Schadt, J. Chem. Phys. 56(4), 1494 (1972).

    Article  Google Scholar 

  29. P. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974; Mir, Moscow, 1977).

    Google Scholar 

  30. W. H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980; Mir, Moscow, 1982).

    Google Scholar 

  31. W. Maser and G. Meier, Z. Naturforsch. A 16, 1200 (1961).

    Google Scholar 

  32. S. Boersma, J. Chem. Phys. 32(6), 1626 (1960).

    Google Scholar 

  33. T. P. Stepanova, L. L. Burshtein, T. I. Borisova, et al., Vysokomol. Soedin., Ser. A 39(4), 606 (1997).

    Google Scholar 

  34. T. P. Stepanova, L. L. Burshtein, T. I. Borisova, and V. P. Shibaev, Vysokomol. Soedin., Ser. A 35(6), 658 (1993).

    Google Scholar 

  35. E. V. Anufrieva, V. D. Pautov, Ya. S. Freidzon, and V. P. Shibaev, Vysokomol. Soedin., Ser. A 19(12), 755 (1977).

    Google Scholar 

  36. V. N. Tsvetkov, E. I. Ryumtsev, and I. N. Shtennikova, Vysokomol. Soedin., Ser. A 13(2), 506 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 10, 2002, pp. 1900–1907.

Original Russian Text Copyright © 2002 by Stepanova, Bursian, Denisov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, T.P., Bursian, A.É. & Denisov, V.M. Dipole moment and mobility of molecules in nematic liquid crystals of the 4-n-butyl ester of [4′-n-hexyloxyphenyl] benzoic acid in the absence of external orienting fields. Phys. Solid State 44, 1993–2000 (2002). https://doi.org/10.1134/1.1514794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1514794

Keywords

Navigation