Skip to main content
Log in

Optical conductivity in a 2D model of the pseudogap state

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A 2D model of the pseudogap state is considered on the basis of the scenario of strong electron scattering by short-range-order fluctuations of the “dielectric” (antiferromagnetic or charge density wave) type. A system of recurrence relations is constructed for a one-particle Green’s function and the vertex part, describing the interaction of electrons with an external field. This system takes into account all Feynman diagrams for electron scattering at short-range-order fluctuations. The results of detailed calculations of optical conductivity are given for various geometries (topologies) of the Fermi surface, demonstrating both the effects of pseudogap formation in the electron spectrum and the localization effects. The obtained results are in qualitative agreement with experimental data for underdoped HTSC cuprates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001).

    Google Scholar 

  3. N. P. Armitage, D. H. Lu, C. Kim, et al., Phys. Rev. Lett. 87, 147 003 (2001).

  4. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998); Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  5. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 1765 (1999) [JETP 88, 968 (1999)].

    Google Scholar 

  6. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 66, 1720 (1974) [Sov. Phys. JETP 39, 845 (1974)]; Fiz. Tverd. Tela (Leningrad) 16, 2504 (1974) [Sov. Phys. Solid State 16, 1632 (1974)].

    Google Scholar 

  7. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 77, 2070 (1979) [Sov. Phys. JETP 50, 989 (1979)].

    Google Scholar 

  8. A. I. Posazhennikova and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 632 (1999) [JETP 88, 347 (1999)].

    Google Scholar 

  9. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 117, 613 (2000) [JETP 90, 535 (2000)].

    Google Scholar 

  10. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 119, 553 (2001) [JETP 92, 480 (2001)].

    Google Scholar 

  11. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 121, 758 (2002) [JETP 94, 654 (2002)].

    Google Scholar 

  12. M. V. Sadovskii and A. A. Timofeev, Sverkhprovodimost: Fiz., Khim., Tekh. 4, 11 (1991).

    Google Scholar 

  13. M. V. Sadovskii and A. A. Timofeev, J. Mosc. Phys. Soc. 1, 391 (1991).

    Google Scholar 

  14. M. V. Sadovskii, Pis’ma Zh. Éksp. Teor. Fiz. 69, 447 (1999) [JETP Lett. 69, 483 (1999)]; Physica C (Amsterdam) 341–348, 939 (2000).

    Google Scholar 

  15. P. Monthoux, A. Balatsky, and D. Pines, Phys. Rev. B 46, 14 803 (1992).

  16. P. Monthoux and A. Balatsky, Phys. Rev. B 47, 6069 (1993); Phys. Rev. B 48, 4261 (1994).

    Article  ADS  Google Scholar 

  17. M. V. Sadovskii, Physica C (Amsterdam) 341–348, 811 (2000).

    Google Scholar 

  18. L. Bartosch and P. Kopietz, Phys. Rev. B 60, 15 488 (1999).

  19. D. Vollhardt and P. Wolfle, Phys. Rev. B 22, 4666 (1980).

    Article  ADS  Google Scholar 

  20. L. P. Gor’kov, A. I. Larkin, and D. E. Khmel’nitskii, Pis’ma Zh. Éksp. Teor. Fiz. 30, 248 (1979) [JETP Lett. 30, 228 (1979)].

    Google Scholar 

  21. P. Monthoux and D. J. Scalapino, Phys. Rev. B 65, 235 104 (2002).

    Google Scholar 

  22. A. A. Gogolin and G. T. Zimanyi, Solid State Commun. 46, 469 (1983).

    Article  Google Scholar 

  23. X. J. Zhou, P. Bogdanov, S. A. Kellar, et al., Science 286, 268 (1999).

    Article  Google Scholar 

  24. A. Damascelli, D. H. Lu, and Z.-X. Shen, cond-mat/0107042.

  25. D. N. Basov, A. V. Puchkov, R. A. Hughes, et al., Phys. Rev. B 49, 12 165 (1994).

  26. D. N. Basov, B. Dabrowski, and T. Timusk, Phys. Rev. Lett. 81, 2132 (1998).

    Article  ADS  Google Scholar 

  27. E. J. Singley, D. N. Basov, K. Kurahashi, et al., cond-mat/0103480.

  28. Y. Onose, Y. Taguchi, K. Ishizaka, and Y. Tokura, Phys. Rev. Lett. 87, 217 001 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 3, 2002, pp. 610–623.

Original Russian Text Copyright © 2002 by Sadovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Strigina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadovskii, M.V., Strigina, N.A. Optical conductivity in a 2D model of the pseudogap state. J. Exp. Theor. Phys. 95, 526–537 (2002). https://doi.org/10.1134/1.1513827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1513827

Keywords

Navigation