Skip to main content
Log in

The effect of normal phonon-phonon scattering processes on the maximum thermal conductivity of isotopically pure silicon crystals

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of normal phonon-phonon scattering processes on the thermal conductivity of silicon crystals with various degrees of isotope disorder is considered. The redistribution of phonon momentum in normal scattering processes is taken into account within each oscillation branch (the Callaway generalized model), as well as between different oscillation branches of the phonon spectrum (the Herring mechanism). The values of the parameters are obtained that determine the phonon momentum relaxation in anharmonic scattering processes. The contributions of the drift motion of longitudinal and transverse phonons to the thermal conductivity are analyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons in the Herring relaxation model represents an efficient mechanism that limits the maximum thermal conductivity in isotopically pure silicon crystals. The dependence of the maximum thermal conductivity on the degree of isotope disorder is calculated. The maximum thermal conductivity of isotopically pure silicon crystals is estimated for two variants of phonon momentum relaxation in normal phonon-phonon scattering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Zhernov and A. V. Inyushkin, Isotope Effects in Solids (Ross. Nauchn. Tsentr “ Kurchatovskii Institut,” Moscow, 2001).

    Google Scholar 

  2. M. Asen-Palmer, K. Bartkowski, E. Gmelin, et al., Phys. Rev. B 56, 9431 (1997).

    Article  ADS  Google Scholar 

  3. V. I. Ozhogin, A. V. Inyushkin, A. N. Taldenkov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 63, 463 (1996) [JETP Lett. 63, 490 (1969)].

    Google Scholar 

  4. A. N. Taldenkov, A. V. Inyushkin, V. I. Ozhogin, et al., in Proceedings of the IV Conference “ Physicochemical Processes under Atomic and Molecular Selection,” Zvenigorod 1999, Nauka, Moscow (1999).

    Google Scholar 

  5. T. H. Geballe and G. W. Hull, Phys. Rev. 110, 1773 (1958).

    Article  ADS  Google Scholar 

  6. T. Ruf, R. W. Henn, M. Asen-Palmer, et al., Solid State Commun. 115, 243 (2000).

    Article  Google Scholar 

  7. R. Berman, Phys. Rev. B 45, 5726 (1992).

    Article  ADS  Google Scholar 

  8. W. S. Capinski, H. J. Maris, E. Bauser, et al., Appl. Phys. Lett. 71, 2109 (1997).

    Article  ADS  Google Scholar 

  9. Lanhua Wei, P. K. Kuo, R. L. Thomas, et al., Phys. Rev. Lett. 70, 3764 (1993).

    ADS  Google Scholar 

  10. J. E. Graebner, M. E. Reiss, L. Seibles, et al., Phys. Rev. B 50, 3702 (1994).

    Article  ADS  Google Scholar 

  11. J. R. Olson, R. O. Pohl, J. W. Vandersande, et al., Phys. Rev. B 47, 14 850 (1993).

  12. A. P. Zhernov and D. A. Zhernov, Zh. Éksp. Teor. Fiz. 114, 1757 (1998) [JETP 87, 952 (1998)]; A. P. Zhernov, Fiz. Tverd. Tela (St. Petersburg) 41, 1185 (1999) [Phys. Solid State 41, 1079 (1999)].

    Google Scholar 

  13. I. G. Kuleev and I. I. Kuleev, Zh. Éksp. Teor. Fiz. 120, 649 (2001) [JETP 93, 568 (2001)].

    Google Scholar 

  14. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  15. R. Berman, Thermal Conduction in Solids (Clarendon, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  16. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972)

    Google Scholar 

  17. V. S. Oskotskii and I. A. Smirnov, Defects in Crystals and Thermal Conductivity (Nauka, Leningrad, 1972), p. 205.

    Google Scholar 

  18. B. H. Armstrong, Phys. Rev. B 32, 3381 (1985).

    Article  ADS  Google Scholar 

  19. J. A. Krumhansl, Proc. Phys. Soc. London 85, 921 (1965).

    Google Scholar 

  20. M. G. Holland, Phys. Rev. 132, 2461 (1963).

    Article  ADS  Google Scholar 

  21. K. Itoh, Low Temperature Carrier Transport Properties in Isotopically Controlled Germanium, PhD Thesis (University of California, Berkeley, 1994).

    Google Scholar 

  22. I. G. Kuleev, Fiz. Tverd. Tela (St. Petersburg) 44, 215 (2002) [Phys. Solid State 44, 223 (2002)].

    Google Scholar 

  23. C. Herring, Phys. Rev. 95, 954 (1954).

    Article  ADS  MATH  Google Scholar 

  24. S. Simons, Proc. Phys. Soc. London 82, 401 (1963); 83, 749 (1964).

    Google Scholar 

  25. G. A. Slack and C. J. Glassbrenner, Phys. Rev. 120, 782 (1960).

    Article  ADS  Google Scholar 

  26. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  27. G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972).

    Article  ADS  Google Scholar 

  28. J. P. Srivastava, J. Phys. Chem. Solids 41, 357 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 3, 2002, pp. 558–569.

Original Russian Text Copyright © 2002 by I. G. Kuleev, I. I. Kuleev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleev, I.G., Kuleev, I.I. The effect of normal phonon-phonon scattering processes on the maximum thermal conductivity of isotopically pure silicon crystals. J. Exp. Theor. Phys. 95, 480–490 (2002). https://doi.org/10.1134/1.1513821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1513821

Keywords

Navigation