Skip to main content
Log in

The distribution function for a subsystem experiencing temperature fluctuations

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A nonlinear generalization of the Landau-Lifshitz theory of hydrodynamic fluctuations for the simplest case in which only energy flux and temperature fluctuations are observed is used to derive the distribution function for a subsystem with a fluctuating temperature, which coincides with the Levy distribution taken to be one of the main results of the so-called Tsallis’s nonextensive statistics. It is demonstrated that the same distribution function is obtained from the principle of maximum of information entropy if the latter is provided by Renyi’s entropy, which is an extensive quantity. The obtained distribution function is to be used instead of the Gibbs distribution in constructing the thermodynamics of systems with significant temperature fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), Part 1.

    Google Scholar 

  2. L. D. Landau, Zh. Éksp. Teor. Fiz. 7, 819 (1937); Ya. I. Frenkel’, Principles of the Nuclear Theory (Akad. Nauk SSSR, Moscow, 1950); V. Weisskopf, in Lecture Series in Nuclear Physics (US Govt. Print. Off., Washington, 1947; Inostrannaya Literatura, Moscow, 1952).

    MATH  Google Scholar 

  3. J. Wu and A. Widom, Phys. Rev. E 57, 5178 (1998).

    ADS  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1978; Pergamon, Oxford, 1980), Part 2.

    Google Scholar 

  5. G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000).

    Article  ADS  Google Scholar 

  6. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. R. de Groot and P. Mazur, Nonequilibium Thermodynamics (North-Holland, Amsterdam, 1962; Mir, Moscow, 1964).

    Google Scholar 

  8. S. Chandrasekhar, Stochastic Problems in Physics and Astronomy (American Inst. of Physics, New York, 1943; Inostrannaya Literatura, Moscow, 1947).

    Google Scholar 

  9. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to Statistical Radio Physics and Optics (Nauka, Moscow, 1981).

    Google Scholar 

  10. D. N. Zubarev, Noneguilibrium Statistical Thermodynamics (Nauka, Moscow, 1971; Consultants Bureau, New York, 1974).

    Google Scholar 

  11. A. Ya. Khinchin, Usp. Mat. Nauk 8(3), 3 (1953).

    MATH  Google Scholar 

  12. J. Uffink, Stud. Hist. Philos. Mod. Phys. B 26, 223 (1995).

    MathSciNet  Google Scholar 

  13. J. E. Shore and R. W. Johnson, IEEE Trans. Inf. Theory IT-26, 26 (1980).

    ADS  MathSciNet  Google Scholar 

  14. A. Renyi, Probability Theory (North-Holland, Amsterdam, 1970).

    Google Scholar 

  15. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  16. Yu. L. Klimontovich, Statistical Theory of Open Systems (Yanus, Moscow, 1995; Kluwer, Dordrecht, 1995).

    Google Scholar 

  17. Z. Daroczy, Inf. Control 16, 36 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A (Amsterdam) 261, 534 (1998).

    Google Scholar 

  19. A. R. Plastino and A. Plastino, Physica A (Amsterdam) 222, 347 (1995).

    ADS  MathSciNet  Google Scholar 

  20. S. Abe, Phys. Lett. A 271, 74 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Schrödinger, Statistical Thermodynamics (Cambridge Univ. Press, Cambridge, 1946; Inostrannaya Literatura, Moscow, 1948).

    Google Scholar 

  22. A. Katz, Principles of Statistical Mechanics (Freeman, San Francisco, 1967).

    Google Scholar 

  23. E. T. Jaynes, Phys. Rev. 106, 620 (1957); Phys. Rev. 108, 171 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. A. G. Bashkirov and A. V. Vityazev, Physica A (Amsterdam) 177, 136 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 3, 2002, pp. 513–520.

Original Russian Text Copyright © 2002 by Bashkirov, Sukhanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkirov, A.G., Sukhanov, A.D. The distribution function for a subsystem experiencing temperature fluctuations. J. Exp. Theor. Phys. 95, 440–446 (2002). https://doi.org/10.1134/1.1513816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1513816

Keywords

Navigation