Skip to main content
Log in

A uniform quasi-classical description of radiative transitions for asymmetric rare-gas atom-atom collisions

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The uniform quasi-classical approximation [14] is used to describe the optical spectra formed during asymmetric collisions between atoms of rare gases in which one of the atoms is in a metastable state. We consider the reactions He(21 S) + Ne → He(11S) + Ne + ħω and Ar(3 P 2) + He → Ar(1S) + He + ħω, in which the optical transition mechanisms are typical of most rare gases. Quasi-molecular terms of excited states and radiative widths calculated in a unified semiempirical approach are used. Spectral characteristics are calculated for thermal collision energies in the entire frequency range, including the center and both wings of the forbidden line. For the blue wing, our results are consistent with the widely used Condon approximation at collision energies E ≥200 cm−1. At lower collision energies and in the region of the red wing and center of the forbidden line, the spectral distributions that cannot be described in the Condon approximation are reproduced in the uniform quasi-classical approximation. Comparison with quantum-mechanical calculations by the strong-coupling method confirms the high accuracy of the uniform quasi-classical approximation in the entire range of radiation frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kurosawa, K. Ohmori, H. Chiba, et al., J. Chem. Phys. 108, 8101 (1998).

    Article  ADS  Google Scholar 

  2. E. Bichoutskaia, A. Devdariani, K. Ohmori, et al., J. Phys. B 34, 2301 (2001).

    Article  ADS  Google Scholar 

  3. I. I. Sobel’man, Atomic Spectra and Radiative Transitions (Fizmatgiz, Moscow, 1963; Springer-Verlag, Berlin, 1979).

    Google Scholar 

  4. A. Z. Devdariani, A. L. Zagrebin, and K. B. Blagoev, Ann. Phys. (Paris) 17, 365 (1992).

    Google Scholar 

  5. B. Keil, L. J. Danielson, U. Buck, et al., J. Chem. Phys. 89, 2866 (1988).

    Article  ADS  Google Scholar 

  6. H. Haberland, W. Konz, and P. Oesterlin, J. Phys. B 15, 2969 (1982).

    Article  ADS  Google Scholar 

  7. A. Z. Devdariani and A. L. Zagrebin, Zh. Éksp. Teor. Fiz. 86, 1969 (1984) [Sov. Phys. JETP 59, 1145 (1984)].

    Google Scholar 

  8. A. Z. Devdariani, A. L. Zagrebin, and K. B. Blagoev, Ann. Phys. (Paris) 14, 467 (1989).

    Google Scholar 

  9. A. L. Zagrebin and S. I. Tserkovnyi, Opt. Spektrosk. 79, 556 (1995) [Opt. Spectrosc. 79, 511 (1995)].

    Google Scholar 

  10. K. M. Smith, A. M. Rulis, and G. Scoles, J. Chem. Phys. 67, 152 (1977).

    ADS  Google Scholar 

  11. A. L. Zagrebin and N. A. Pavlovskaya, Opt. Spektrosk. 66, 996 (1989) [Opt. Spectrosc. 66, 582 (1989)].

    Google Scholar 

  12. L. Brunetti, F. Vecchiocattivi, and A. Aquilar-Navarro, Chem. Phys. Lett. 126, 245 (1986).

    Article  ADS  Google Scholar 

  13. G. K. Ivanov, Teor. Éksp. Khim. 14, 610 (1978).

    Google Scholar 

  14. A. Z. Devdariani, Zh. Éksp. Teor. Fiz. 96, 472 (1989) [Sov. Phys. JETP 69, 266 (1989)].

    Google Scholar 

  15. A. Z. Devdariani and E. A. Chesnokov, Khim. Fiz. 17, 57 (1998).

    Google Scholar 

  16. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, 1964; Nauka, Moscow, 1979).

    Google Scholar 

  17. E. E. Nikitin and S. Ya. Umanskii, Theory of Slow Atomic Collisions (Atomizdat, Moscow, 1979; Springer-Verlag, New York, 1984).

    Google Scholar 

  18. W. H. Miller, J. Chem. Phys. 48, 464 (1968).

    Google Scholar 

  19. J. N. L. Connor, J. Chem. Phys. 74, 1047 (1981).

    ADS  MathSciNet  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977, 3rd ed.; Nauka, Moscow, 1989, 4th ed.).

    Google Scholar 

  21. T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978; Mir, Moscow, 1980).

    Google Scholar 

  22. F. Rebentrost, S. Klose, and J. Grosser, Eur. Phys. J. D 1, 277 (1998).

    Article  ADS  Google Scholar 

  23. K. C. Kulander and F. Rebentrost, J. Chem. Phys. 80, 5623 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 3, 2002, pp. 481–489.

Original Russian Text Copyright © 2002 by Devdariani, Zagrebin, Rebentrost, Tserkovnyi, Tchesnokov.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devdariani, A.Z., Zagrebin, A.L., Rebentrost, F. et al. A uniform quasi-classical description of radiative transitions for asymmetric rare-gas atom-atom collisions. J. Exp. Theor. Phys. 95, 413–420 (2002). https://doi.org/10.1134/1.1513813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1513813

Keywords

Navigation