Skip to main content
Log in

Hyper-resistive modeling in the spheromak

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Current drive by coaxial helicity injection in the Sustained Spheromak Physics Experiment (SSPX) is modeled by a hyper-resistive term in Ohm's law for discharges in which magnetic fluctuations are small (1–3%). The current on the open magnetic field lines from the applied vacuum bias flux is assumed completely relaxed; interior to the spheromak, the helicity flux balances the ohmic losses. The poloidal area of the spheromak is found to depend on the strength of the hyper-resistive diffusion coefficient, allowing potentially large amplifications of the vacuum flux and discharge current. One discharge is examined in detail; the best fit to the experimental data finds that a limited fraction of the helicity injected into the flux conserver is effectively applied to current drive interior to the spheromak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Jarboe, Plasma Phys. Controlled Fusion 36, 945 (1994).

    Article  ADS  Google Scholar 

  2. P. M. Bellan, Spheromaks (Imperial College Press, London, 2000).

    Google Scholar 

  3. T. R. Jarboe, I. Hennins, A. R. Sherwood, et al., Phys. Rev. Lett. 51, 39 (1983).

    Article  ADS  Google Scholar 

  4. N. Nagata, T. Kanki, T. Matsuda, et al., Phys. Rev. Lett. 71, 4342 (1993).

    ADS  Google Scholar 

  5. M. G. Rusbridge, S. J. Gee, P. K. Browning, et al., Plasma Phys. Controlled Fusion 39, 683 (1997).

    Article  ADS  Google Scholar 

  6. H. S. McLean, S. Woodruff, E. B. Hooper, et al., Phys. Rev. Lett. 88, 125004 (2002).

    Google Scholar 

  7. J. B. Taylor and M. F. Turner, Nucl. Fusion 29, 219 (1989).

    Google Scholar 

  8. A. H. Boozer, J. Plasma Phys. 35, 133 (1986).

    Article  ADS  Google Scholar 

  9. E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999).

    Article  ADS  Google Scholar 

  10. A. R. Jacobson and R. W. Moses, Phys. Rev. A 29, 3335 (1984).

    Article  ADS  Google Scholar 

  11. H. R. Strauss, Phys. Fluids 29, 3668 (1986).

    MATH  ADS  Google Scholar 

  12. A. Bhattacharjee and E. Hameiri, Phys. Rev. Lett. 57, 206 (1986).

    Article  ADS  Google Scholar 

  13. G. G. Craddock, Phys. Fluids B 3, 316 (1991).

    ADS  Google Scholar 

  14. J. Blum and J. LeFoll, Comput. Phys. Rep. 1, 465 (1984); a set of lecture notes due to S. C. Jardin, private communication.

    Article  ADS  Google Scholar 

  15. D. J. Ward and S. C. Jardin, Nucl. Fusion 29, 905 (1989).

    Google Scholar 

  16. D. A. Kitson and P. K. Browning, Plasma Phys. Controlled Fusion 32, 1265 (1990).

    Article  ADS  Google Scholar 

  17. A. H. Boozer, Plasma Confinement, in Encyclopedia of Physical Science and Technology (Academic, New York, 1992), Vol. 13, p. 1.

    Google Scholar 

  18. B. W. Stallard, private communication (2001).

  19. A. al-Karkhy, P. K. Browning, G. Cunningham, et al., Phys. Rev. Lett. 70, 1814 (1993).

    ADS  Google Scholar 

  20. R. C. Duck, P. K. Browning, G. Cunningham, et al., Plasma. Phys. Controlled Fusion 39, 715 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Plazmy, Vol. 28, No. 9, 2002, pp. 831–839.

Original English Text Copyright © 2002 by Hooper, Pearlstein.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, E.B., Pearlstein, L.D. Hyper-resistive modeling in the spheromak. Plasma Phys. Rep. 28, 765–772 (2002). https://doi.org/10.1134/1.1508027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1508027

Keywords

Navigation