Skip to main content
Log in

Clustering of the low-inertia particle number density field in random divergence-free hydrodynamic flows

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the diffusion of the low-inertia particle number density field in random divergence-free hydrodynamic flows. The principal feature of this diffusion is the divergence of the particle velocity field, which results in clustering of the particle number density field. This phenomenon is coherent, occurs with a unit probability, and must show up in almost all realizations of the process dynamics. We calculate the statistical parameters that characterize clustering in three-dimensional and two-dimensional random fluid flows and in a rapidly rotating two-dimensional random flow. In the former case, the vortex component of the random divergence-free flow generates a vortex component of the low-inertia particle velocity field, which generates a potential component of the velocity field through advection. By contrast, in the case of rapid rotation, a potential component of the velocity field is generated directly by the vortex component of the random divergence-free flow (linear problem).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Stokes, Trans. Camb. Philos. Soc. 9, 8 (1851).

    Google Scholar 

  2. H. Lamb, Hydrodynamics (Dover, New York, 1932; Gostekhizdat, Moscow, 1947).

    Google Scholar 

  3. M. Ungarish, Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation (Springer-Verlag, New York, 1993).

    Google Scholar 

  4. Sedimentation of Small Particles in a Viscous Fluid, Ed. by E. M. Tory (Computational Mechanics Publications, Southampton, 1996), Advances in Fluid Mechanics, Vol. 7.

  5. M. R. Maxey and J. J. Riley, Phys. Fluids 26, 883 (1983).

    Article  ADS  Google Scholar 

  6. M. R. Maxey and S. Corsin, J. Atmos. Sci. 43, 1112 (1986).

    Article  ADS  Google Scholar 

  7. M. R. Maxey, J. Fluid Mech. 174, 441 (1987).

    ADS  MATH  Google Scholar 

  8. M. R. Maxey, Philos. Trans. R. Soc. London, Ser. A 333, 289 (1990).

    ADS  MATH  MathSciNet  Google Scholar 

  9. L. P. Wang and M. R. Maxey, J. Fluid Mech. 256, 27 (1993).

    ADS  Google Scholar 

  10. M. R. Maxey, E. J. Chang, and L.-P. Wang, Exp. Therm. Fluid Sci. 12, 417 (1996).

    Article  Google Scholar 

  11. T. Elperin, N. Kleeorin, and I. Rogachevskii, Phys. Rev. E 53, 3431 (1996); 58, 3113 (1998); Phys. Rev. Lett. 76, 224 (1996); 77, 5373 (1996); 81, 2898 (1998); Atmos. Res. 53, 117 (2000).

    ADS  MathSciNet  Google Scholar 

  12. E. Balkovsky, G. Falkovich, and A. Fouxon, Phys. Rev. Lett. 86, 2790 (2001).

    Article  ADS  Google Scholar 

  13. V. I. Klyatskin and A. I. Saichev, Zh. Éksp. Teor. Fiz. 111, 1297 (1997) [JETP 84, 716 (1997)].

    Google Scholar 

  14. V. I. Klyatskin and D. Gurarie, Usp. Fiz. Nauk 169, 171 (1999).

    Google Scholar 

  15. V. I. Klyatskin, Izv. Akad. Nauk, Fiz. Atmos. Okeana 36, 177 (2000).

    Google Scholar 

  16. V. I. Klyatskin, Stochastic Equations as Point of View of Physicist (Basic Ideas, Exact Results, and Asymptotic Approximations) (Fizmatlit, Moscow, 2001).

    Google Scholar 

  17. C. L. Zirbel and E. Çinlar, Stochastic Models in Geosystems, Ed. by S. A. Molchanov and W. A. Woyczynski (Springer-Verlag, New York, 1996), IMA Volumes in Mathematics and Its Applications, Vol. 85, p. 459.

    Google Scholar 

  18. K. V. Koshel’ and O. V. Aleksandrova, Izv. Akad. Nauk, Fiz. Atmos. Okeana 35, 638 (1999).

    Google Scholar 

  19. V. I. Klyatskin and K. V. Koshel’, Usp. Fiz. Nauk 170, 771 (2000).

    Google Scholar 

  20. K. Furutsu, J. Res. Natl. Bur. Stand., Sect. D 67, 303 (1963).

    MATH  Google Scholar 

  21. E. A. Novikov, Zh. Éksp. Teor. Fiz. 47, 1919 (1964) [Sov. Phys. JETP 20, 1290 (1964)].

    Google Scholar 

  22. V. I. Klyatskin, Mathematics of Random Media, Ed. by W. Kohler and B. S. White (American Mathematical Society, Providence, 1991), Lectures in Applied Mathematics, Vol. 27, p. 447.

    Google Scholar 

  23. V. I. Klyatskin and I. G. Yakushkin, Zh. Éksp. Teor. Fiz. 118, 849 (2000) [JETP 91, 736 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 2, 2002, pp. 328–340.

Original Russian Text Copyright © 2002 by Klyatskin, Elperin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyatskin, V.I., Elperin, T. Clustering of the low-inertia particle number density field in random divergence-free hydrodynamic flows. J. Exp. Theor. Phys. 95, 282–293 (2002). https://doi.org/10.1134/1.1506436

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1506436

Keywords

Navigation