Astronomy Reports

, Volume 46, Issue 8, pp 626–633 | Cite as

Reconstruction of the strip brightness distribution in a quasar accretion disk from gravitational microlensing data

  • M. B. Bogdanov
  • A. M. Cherepashchuk


A technique is proposed for the successive reconstruction of the branches of the strip brightness distribution for a quasar accretion disk via the analysis of observations of high magnification flux events in the multiple quasar images produced by a gravitational lens. The distribution branches are searched for on compact sets of nonnegative, monotonically nonincreasing, convex downward functions. The results of numerical simulations and application of the technique to real observations show that the solution obtained is stable against random noise. Analysis of the light curve of a high magnification event in image C of the gravitational lens QSO 2237+0305 observed by the OGLE group in summer 1999 has yielded the form of the strip brightness distribution in the accretion disk of the lensed quasar. The results are consistent with the hypothesis that the quasar disk was scanned by a fold caustic. The form of the strip distribution is consistent with the expected appearance of an accretion disk rotating around a supermassive black hole.


Black Hole Light Curve Random Noise Accretion Disk Gravitational Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Grieger, R. Kayser, and T. Schramm, Astron. Astrophys. 252, 508 (1991).ADSGoogle Scholar
  2. 2.
    E. Agol and J. Krolik, Astrophys. J. 524(1), 49 (1999).CrossRefADSGoogle Scholar
  3. 3.
    M. B. Bogdanov and A. M. Cherepashchuk, Joint European and National Astronomy Meeting “JENAM-2000” (GEOS, Moscow, 2000), p. 145.Google Scholar
  4. 4.
    S. Mineshige and A. Yonehara, Publ. Astron. Soc. Jpn. 51, 497 (1999).ADSGoogle Scholar
  5. 5.
    M. B. Bogdanov and A. M. Cherepashchuk, Astron. Zh. 77, 842 (2000) [Astron. Rep. 44, 745 (2000)].Google Scholar
  6. 6.
    V. N. Shalyapin, Astron. Zh. 72, 668 (1995) [Astron. Rep. 39, 594 (1995)].ADSGoogle Scholar
  7. 7.
    J. S. B. Wyithe, R. L. Webster, E. L. Turner, and D. J. Mortlock, Mon. Not. R. Astron. Soc. 315, 62 (2000).ADSGoogle Scholar
  8. 8.
    A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Regularizing Algorithms and A Priori Information [in Russian] (Nauka, Moscow, 1983).Google Scholar
  9. 9.
    A. V. Goncharskii, A. M. Cherepashchuk, and A. G. Yagola, Ill-posed Problems in Astrophysics [in Russian] (Nauka, Moscow, 1985).Google Scholar
  10. 10.
    P. Schneider, J. Ehlers, and E. E. Falco, Gravitational Lenses (Springer-Verlag, Berlin, 1992).Google Scholar
  11. 11.
    A. F. Zakharov, Gravitational Lenses and Microlenses [in Russian] (Yanus-K, Moscow, 1997).Google Scholar
  12. 12.
    N. I. Shakura, Astron. Zh. 49, 921 (1972) [Sov. Astron. 16, 756 (1972)].ADSGoogle Scholar
  13. 13.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  14. 14.
    I. D. Novikov and K. S. Thorne, Black Holes (Gordon and Breach, New York, 1973), p. 343.Google Scholar
  15. 15.
    D. N. Page and K. S. Thorne, Astrophys. J. 191, 499 (1974).CrossRefADSGoogle Scholar
  16. 16.
    J. H. Krolik, Active Galactic Nuclei (Princeton Univ. Press, Princeton, 1999).Google Scholar
  17. 17.
    J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).CrossRefADSGoogle Scholar
  18. 18.
    K. S. Thorne, Astrophys. J. 191, 507 (1974).CrossRefADSGoogle Scholar
  19. 19.
    C. T. Cunningham, Astrophys. J. 202, 788 (1975).CrossRefADSGoogle Scholar
  20. 20.
    A. Laor, Astrophys. J. 376, 90 (1991).CrossRefADSGoogle Scholar
  21. 21.
    V. Karas, D. Vokrouhlicky, and A. G. Polnarev, Mon. Not. R. Astron. Soc. 259, 569 (1992).ADSGoogle Scholar
  22. 22.
    K. P. Rauch and R. D. Blandford, Astrophys. J. 421, 46 (1994).CrossRefADSGoogle Scholar
  23. 23.
    B. C. Bromley, K. Chen, and W. A. Miller, Astrophys. J. 475, 57 (1997).ADSGoogle Scholar
  24. 24.
    V. I. Pariev and B. C. Bromley, Astrophys. J. 508, 590 (1998).CrossRefADSGoogle Scholar
  25. 25.
    A. F. Zakharov and S. V. Repin, Astron. Zh. 76, 780 (1999) [Astron. Rep. 43, 705 (1999)].Google Scholar
  26. 26.
    S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations [in Russian] (Nauka, Moscow, 1985).Google Scholar
  27. 27.
    M. B. Bogdanov, astro-ph/0102031 (2001).Google Scholar
  28. 28.
    M. J. Irwin, R. L. Webster, P. C. Hewitt, et al., Astron. J. 98, 1989 (1989).CrossRefADSGoogle Scholar
  29. 29.
    R. T. Corrigan, M. J. Irwin, J. Arnaud, et al., Astron. J. 102, 34 (1991).CrossRefADSGoogle Scholar
  30. 30.
    R. Ostensen, S. Refsdal, R. Stabell, et al., Astron. Astrophys. 309, 590 (1996).Google Scholar
  31. 31.
    P. R. Wozniak, C. Alard, A. Udalski, et al., Astrophys. J. 529, 88 (2000).ADSGoogle Scholar
  32. 32.
    P. R. Wozniak, A. Udalski, M. Szymanski, et al., Astrophys. J. 540, L65 (2000).ADSGoogle Scholar
  33. 33.
    J. S. B. Wyithe, E. L. Turner, and R. L. Webster, Mon. Not. R. Astron. Soc. 318, 1120 (2000).ADSGoogle Scholar
  34. 34.
    N. White, Nature 407, 146 (2000).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • M. B. Bogdanov
    • 1
    • 2
  • A. M. Cherepashchuk
    • 1
    • 2
  1. 1.Chernyshevskii State UniversitySaratovRussia
  2. 2.Sternberg Astronomical InstituteMoscowRussia

Personalised recommendations