Skip to main content
Log in

Models of spin structures in Sr2RuO4

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The mean-field method is used to calculate the bands, Fermi surfaces, and spin susceptibilities of a three-band model of the RuO4 plane of Sr2RuO4 rutinate for states with different spin structures. In particular, the spiral state is studied with the “incommensurate” vector Q=2π(1/3, 1/3) corresponding to the nesting of bands with the population n=4. This state proves to be the lowest with respect to energy among other (paramagnetic, ferromagnetic, antiferromagnetic, and periodic) solutions. In the spiral state, in addition to the main α, β, and γ sheets of the Fermi surface, shadow Fermi boundaries along the Γ(0, 0)-M(π, 0) line (previously observed in the ARPES experiments) are revealed and explained. This may change the interpretation of the data on dispersionless peaks in photoemission, previously ascribed to surface states. The spin susceptibilities of the spiral state exhibit peaks in the dependence Imϰ(q, ω) at q=Q in accordance with the observed magnetic peak in neutron scattering. The hypothesis of the presence of spin structures with q=Q in the normal state of Sr2RuO4 and the methods of checking this hypothesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Maeno, T. M. Rice, and M. Sigrist, Phys. Today 54, 42 (2001).

    ADS  Google Scholar 

  2. Y. Maeno, H. Hashimoto, K. Yoshita, et al., Nature 372, 532 (1994).

    Article  ADS  Google Scholar 

  3. T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).

    Article  ADS  Google Scholar 

  4. K. Ishida, H. Mukuda, Y. Kitaoka, et al., Nature 396, 658 (1998).

    Article  Google Scholar 

  5. M. Mukuda, K. Ishida, Y. Kitaoka, et al., J. Phys. Soc. Jpn. 67, 3945 (1998).

    Google Scholar 

  6. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733 (1997).

    Article  ADS  Google Scholar 

  7. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 82, 4324 (1999).

    Article  ADS  Google Scholar 

  8. A. Liebsch and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000).

    Article  ADS  Google Scholar 

  9. M. Braden, G. Andre, S. Nakatsyji, and Y. Maeno, Phys. Rev. B 58, 847 (1998).

    Article  ADS  Google Scholar 

  10. O. Friedt, M. Braden, G. Andre, et al., Phys. Rev. B 63, 174432 (2001).

  11. R. S. Perry, L. M. Galvin, S. A. Grigera, et al., Phys. Rev. Lett. 86, 2661 (2001).

    Article  ADS  Google Scholar 

  12. Y. Sidis, M. Braden, P. Bourges, et al., Phys. Rev. Lett. 83, 3320 (1999).

    Article  ADS  Google Scholar 

  13. M. Braden, O. Friedt, Y. Sidis, et al., cond-mat/0107579.

  14. J. J. Neumeier, M. F. Hundley, M. G. Smith, et al., Phys. Rev. B 50, 17910 (1994).

    Google Scholar 

  15. S. Nishizaki, Y. Maeno, Z. Mao, et al., J. Phys. Soc. Jpn. 69, 572 (2000).

    Article  Google Scholar 

  16. I. Mazin and D. J. Singh, Phys. Rev. Lett. 82, 4324 (1999).

    Article  ADS  Google Scholar 

  17. I. Eremin, D. Manske, C. Joas, and K. M. Bennemann, cond-mat/0102074.

  18. J. R. Schrieffer, X. G. Wen, and F. C. Zhang, Phys. Rev. B 39, 11663 (1989).

    Google Scholar 

  19. A. V. Chubukov and K. A. Mussaelian, Phys. Rev. B 51, 12605 (1995).

    Google Scholar 

  20. A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. Éksp. Teor. Fiz. 116, 1058 (1999) [JETP 89, 564 (1999)].

    Google Scholar 

  21. A. P. Mackenzie, S. R. Julian, A. J. Diver, et al., Phys. Rev. Lett. 76, 3786 (1996).

    Article  ADS  Google Scholar 

  22. P. G. Grigoriev, M. V. Kartsovnik, W. Biberacher, et al., cond-mat/0108352.

  23. A. Puchkov, Z. X. Shen, T. Kimura, and Y. Tokura, Phys. Rev. B 58, R13322 (1998).

  24. D. H. Lu, M. Schmidt, T. R. Cummins, et al., Phys. Rev. Lett. 76, 4845 (1996).

    ADS  Google Scholar 

  25. T. Yokoya, A. Chanani, T. Takahashi, et al., Phys. Rev. B 54, 13311 (1996).

  26. A. Damascelli, D. H. Lu, K. M. Shen, et al., Phys. Rev. Lett. 85, 5194 (2000).

    Article  ADS  Google Scholar 

  27. P. K. de Boer and R. A. de Groot, Phys. Rev. B 59, 9894 (1999).

    ADS  Google Scholar 

  28. T. Oguchi, Phys. Rev. B 51, 1385 (1995).

    Article  ADS  Google Scholar 

  29. R. Matzdorf, Z. Fang, Ismail, et al., Science 289(5480), 746 (2000).

    Article  ADS  Google Scholar 

  30. Yu. A. Izyumov, I. M. Katsnel’son, and Yu. N. Skryabin, Magnetism of Collective Electrons (Nauka, Moscow, 1994).

    Google Scholar 

  31. Y. Izuyama, D.-J. Kim, and R. Kubo, J. Phys. Soc. Jpn. 18, 1025 (1963).

    Google Scholar 

  32. T. Imai, A. W. Hunt, K. R. Thurber, and F. C. Chou, Phys. Rev. Lett. 81, 3006 (1998).

    ADS  Google Scholar 

  33. P. Bourges, H. Casalta, A. S. Ivanov, and D. Petitgrand, Phys. Rev. Lett. 79, 4906 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 1, 2002, pp. 101–115.

Original Russian Text Copyright © 2002 by Ovchinnikov, Ovchinnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikov, A.A., Ovchinnikova, M.Y. Models of spin structures in Sr2RuO4 . J. Exp. Theor. Phys. 95, 87–100 (2002). https://doi.org/10.1134/1.1499906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1499906

Keywords

Navigation