Skip to main content
Log in

Decaying quasi-two-dimensional turbulence in a thin liquid layer

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of laboratory measurements of decaying quasi-two-dimensional turbulence in a thin liquid layer are considered. It is shown that the enstrophy-to-energy ratio decreases according to a power law on a certain decay interval. The exponent in the power law is a function of the Reynolds number. The enstrophy decay is found to be anomalously slow as predicted in a number of numerical studies. It is shown that the anomalous decay in the quasi-two-dimensional flow under investigation is not due to intense vortex formation as in the numerical decaying turbulence, but due to the limited range of scales on which a flow can be regarded as two-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Google Scholar 

  2. G. K. Batchelor, Phys. Fluids 12, 233 (1969).

    Article  MATH  Google Scholar 

  3. J. C. McWilliams, J. Fluid Mech. 146, 21 (1984).

    ADS  MATH  Google Scholar 

  4. G. F. Carnevale, J. C. McWilliams, Y. Pomeau, et al., Phys. Rev. Lett. 66, 2735 (1991).

    Article  ADS  Google Scholar 

  5. J. B. Weiss and J. C. McWilliams, Phys. Fluids A 5, 608 (1993).

    Article  ADS  Google Scholar 

  6. R. Benzi, S. Partanello, and P. Santangelo, J. Phys. A 21, 1221 (1988).

    Article  ADS  Google Scholar 

  7. R. Benzi, M. Colella, M. Briscolini, and P. Santangelo, Phys. Fluids A 4, 1036 (1992).

    Article  ADS  Google Scholar 

  8. P. Bartello and T. Warn, J. Fluid Mech. 326, 357 (1996).

    ADS  Google Scholar 

  9. J. R. Chasnov, Phys. Fluids 9, 171 (1997).

    Article  ADS  Google Scholar 

  10. J. C. McWilliams, J. Fluid Mech. 219, 361 (1990).

    ADS  Google Scholar 

  11. H. Kellay, X. L. Wu, and W. I. Goldburg, Phys. Rev. Lett. 74, 3975 (1995).

    Article  ADS  Google Scholar 

  12. B. K. Martin, X. L. Wu, W. I. Goldburg, and M. A. Rutgers, Phys. Rev. Lett. 80, 3964 (1998).

    ADS  Google Scholar 

  13. M. Rivera, P. Vorobieff, and R. E. Recke, Phys. Rev. Lett. 81, 1417 (1998).

    Article  ADS  Google Scholar 

  14. A. Belmonte, W. I. Goldburg, H. Kellay, et al., Phys. Fluids 11, 1196 (1999).

    Article  ADS  Google Scholar 

  15. H. Kellay, C. H. Bruneau, and X. L. Wu, Phys. Rev. Lett. 84, 1696 (2000).

    Article  ADS  Google Scholar 

  16. O. Cardoso, D. Marteau, and P. Tabeling, Phys. Rev. E 49, 454 (1994).

    Article  ADS  Google Scholar 

  17. A. E. Hansen, D. Marteau, and P. Tabeling, Phys. Rev. E 58, 7261 (1998).

    ADS  Google Scholar 

  18. E. B. Gledzer, F. V. Dolzhanskii, and A. M. Obukhov, Hydrodynamic-Type Systems and Their Application (Nauka, Moscow, 1981), p. 368.

    Google Scholar 

  19. F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, Usp. Fiz. Nauk 160(7), 1 (1990) [Sov. Phys. Usp. 33, 495 (1990)].

    Google Scholar 

  20. B. Jüttner, D. Marteau, P. Tabeling, and A. Thess, Phys. Rev. E 55, 5479 (1997).

    ADS  Google Scholar 

  21. F. V. Dolzhanskii, Fiz. Atmos. Okeana 23, 348 (1987).

    Google Scholar 

  22. F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, J. Fluid Mech. 241, 705 (1992).

    ADS  Google Scholar 

  23. F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, Russ. J. Comp. Mech. 1, 107 (1993).

    Google Scholar 

  24. V. A. Krymov and D. Yu. Manin, Fiz. Atmos. Okeana 28, 129 (1992).

    ADS  Google Scholar 

  25. S. D. Danilov and V. A. Dovzhenko, Fiz. Atmos. Okeana 31, 621 (1995).

    Google Scholar 

  26. S. D. Danilov and V. G. Kochina, Fiz. Atmos. Okeana 33, 845 (1997).

    Google Scholar 

  27. S. D. Danilov, F. V. Dolzhanskii, V. A. Dovzhenko, and V. A. Krymov, Chaos 6, 297 (1996).

    Article  ADS  Google Scholar 

  28. S. D. Danilov and F. V. Dolzhanskii, Fiz. Atmos. Okeana 36, 35 (2000).

    MathSciNet  Google Scholar 

  29. S. D. Danilov, V. A. Dovzhenko, and V. A. Krymov, Fiz. Atmos. Okeana 36, 284 (2000).

    Google Scholar 

  30. D. Marteau, O. Cardoso, and P. Tabeling, Phys. Rev. E 51, 5124 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 1, 2002, pp. 57–67.

Original Russian Text Copyright © 2002 by Danilov, Dovzhenko, Dolzhanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Kochina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, S.V., Dovzhenko, V.A., Dolzhanskii, F.V. et al. Decaying quasi-two-dimensional turbulence in a thin liquid layer. J. Exp. Theor. Phys. 95, 48–56 (2002). https://doi.org/10.1134/1.1499900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1499900

Keywords

Navigation