Skip to main content
Log in

Spontaneous transformations of the magnetic structure of a film nanocontact

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The magnetization distributions in a symmetric magnetic film nanocontact for oppositely magnetized ferromagnetic electrodes are analyzed based on numerically solving the Landau-Lifshitz and magnetostatic equations as a function of magnetic and geometrical factors. It is found that a symmetric magnetic configuration is unstable when the head-to-head domain wall dividing the regions with opposite orientations of magnetization is located at the center of the nanocontact. The instability arises when the uniaxial magnetic anisotropy constant reaches a certain critical value K c below which it spontaneously leaves the center of the nanocontact. The transition from the symmetric state (wall at the center) to an asymmetric one can be continuous (second order) or discrete (first order), depending on the geometrical and physical parameters of the nanocontact (length to width ratio, anisotropy constant, and saturation magnetization). The phase diagram is constructed in terms of the variable’s nanocontact length vs. anisotropy constant. This diagram divides the symmetric and asymmetric magnetic configurations of the system. The occurrence of a tricritical point in the phase diagram is its characteristic feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Landauer, Z. Phys. B 68, 217 (1987).

    Article  Google Scholar 

  2. J. I. Pascual, J. Méndez, J. Gómez-Herrero, et al., Phys. Rev. Lett. 71, 1852 (1993).

    Article  ADS  Google Scholar 

  3. R. Landauer, J. Phys.: Condens. Matter 1, 8099 (1989).

    Article  ADS  Google Scholar 

  4. N. Garcia et al., Europhys. News 27, 89 (1996).

    Google Scholar 

  5. J. L. Costa-Kramer, N. Garcia, P. Garcia-Mochales, P. A. Serena, M. I. Marques, and A. Correia, Phys. Rev. B 55, 5416 (1997).

    ADS  Google Scholar 

  6. R. C. Giordano, Physica B (Amsterdam) 194, 1009 (1994); Phys. Rev. B 51, 9855 (1995).

    ADS  Google Scholar 

  7. Yu. Lyanda-Geller, I. L. Aleiner, and P. M. Goltbart, Phys. Rev. Lett. 81, 3215 (1998).

    Article  ADS  Google Scholar 

  8. U. Ebels, A. Radulescu, Y. Henry, et al., Phys. Rev. Lett. 84, 983 (2000).

    Article  ADS  Google Scholar 

  9. C. P. Tatara and Y. Fukuyama, Phys. Rev. Lett. 78, 3773 (1997).

    Article  ADS  Google Scholar 

  10. M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987); M. Johnson, Science 260, 320 (1993).

    ADS  Google Scholar 

  11. P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).

    ADS  Google Scholar 

  12. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    Article  ADS  Google Scholar 

  13. L. Berger, Phys. Rev. B 54(13), 9353 (1996).

    Article  ADS  Google Scholar 

  14. M. V. Tsoi, A. G. M. Jansen, J. Bass, et al., Phys. Rev. Lett. 80, 4281 (1998).

    Article  ADS  Google Scholar 

  15. N. Garcia, M. Munoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999).

    ADS  Google Scholar 

  16. G. Tatara, Y.-W. Zhao, M. Munoz, and N. García, Phys. Rev. Lett. 83, 2030 (1999).

    Article  ADS  Google Scholar 

  17. M. Muñoz, G. G. Qian, N. Karar, et al., Appl. Phys. Lett. 79, 2946 (2001).

    ADS  Google Scholar 

  18. N. García, M. Muñoz, G. G. Qian, et al., Appl. Phys. Lett. 79, 4550 (2001).

    ADS  Google Scholar 

  19. N. García, Appl. Phys. Lett. 77, 1351 (2000).

    ADS  Google Scholar 

  20. N. García, M. Muñoz, and Y.-W. Zhao, Appl. Phys. Lett. 76, 2586 (2000).

    ADS  Google Scholar 

  21. J. J. Varsluijs, M. A. Bari, and J. M. D. Coey, Phys. Rev. Lett. 87, 026601 (2001).

    Google Scholar 

  22. H. Imamura, N. Kobayashi, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 84, 1003 (2000).

    Article  ADS  Google Scholar 

  23. J. M. Coey, L. Berger, and Y. Labaye, Phys. Rev. B 64, 020407 (2001).

    Google Scholar 

  24. A. K. Zvezdin and A. F. Popkov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 304 (2000) [JETP Lett. 71, 209 (2000)].

    Google Scholar 

  25. L. R. Tagirov, B. P. Vodopyanov, and K. B. Efetov, Phys. Rev. B 63, 104428 (2001).

    Google Scholar 

  26. V. V. Osipv, E. V. Ponizovskaya, and N. García, Appl. Phys. Lett. 79, 2222 (2001).

    ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1969; Pergamon, New York, 1984).

    Google Scholar 

  28. L. L. Savchenko, A. K. Zvezdin, A. F. Popkov, and K. A. Zvezdin, Fiz. Tverd. Tela (St. Petersburg) 43, 1449 (2000) [Phys. Solid State 43, 1509 (2000)].

    Google Scholar 

  29. W. F. Brown, Micromagnetics (Interscience, New York, 1963; Nauka, Moscow, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 75, No. 10, 2002, pp. 613–616.

Original Russian Text Copyright © 2002 by A. Zvezdin, K. Zvezdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvezdin, A.A., Zvezdin, K.A. Spontaneous transformations of the magnetic structure of a film nanocontact. Jetp Lett. 75, 517–520 (2002). https://doi.org/10.1134/1.1497880

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1497880

PACS numbers

Navigation