Skip to main content
Log in

Electromagnetic field induced by shock compression of a current-carrying conductor

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electromagnetic field induced by shock compression of a current-carrying conductor is shown to consist of two current waves. One propagates in the uncompressed material at the shock-wave velocity. The other is due to current inward diffusion. As the shock wave propagates, the current passes from the first wave to the second. At large observation periods, the situation resembles conventional current diffusion into a conducting half-space. Control parameters for electrodynamic problems with shock waves are found. Their physical meaning is the ratio between the times of field convection and diffusion in different regions. In specific cases, the problem is reduced to the motion of the surface of a current-carrying half-space and to shock metallization of an insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam, 1970; Mir, Moscow, 1972).

    Google Scholar 

  2. L. V. Al’tshuler, Usp. Fiz. Nauk 85, 197 (1965) [Sov. Phys. Usp. 8, 52 (1965)].

    Google Scholar 

  3. The Physics of High Energy Density, Ed. by P. Caldirola and H. Knoepfel (Academic, New York, 1971; Mir, Moscow, 1974).

    Google Scholar 

  4. W. Marshall, Proc. R. Soc. London, Ser. A 233, 367 (1955).

    ADS  MATH  MathSciNet  Google Scholar 

  5. H. Sen, Phys. Rev. 102, 5 (1956).

    Article  ADS  Google Scholar 

  6. J. M. Burgers, in Magnetohydrodynamics: A Symposium, Ed. by R. K. M. Landshoff (Stanford Univ. Press, Stanford, 1957; Atomizdat, Moscow, 1958).

    Google Scholar 

  7. E. I. Zababakhin and M. N. Nechaev, Zh. Éksp. Teor. Fiz. 33, 442 (1957) [Sov. Phys. JETP 6, 345 (1958)].

    Google Scholar 

  8. J. N. Fritz and J. A. Morgan, Rev. Sci. Instrum. 44, 215 (1973).

    ADS  Google Scholar 

  9. Yu. N. Zhugin and K. K. Krupnikov, Prikl. Mekh. Tekh. Fiz. 20(1), 102 (1983).

    Google Scholar 

  10. V. V. Pai, I. V. Yakovlev, and G. E. Kuz’min, Fiz. Goreniya Vzryva 32(2), 124 (1996).

    Google Scholar 

  11. Yu. N. Zhugin and Yu. L. Levakova, Prikl. Mekh. Tekh. Fiz. 41(6), 199 (2000).

    Google Scholar 

  12. V. V. Pai, Ya. L. Luk’yanov, I. V. Yakovlev, and G. E. Kuz’min, Fiz. Goreniya Vzryva 36(6), 164 (2000).

    Google Scholar 

  13. S. D. Gilev and T. Yu. Mikhailova, Zh. Tekh. Fiz. 66(5), 1 (1996) [Tech. Phys. 41, 407 (1996)].

    Google Scholar 

  14. S. D. Gilev and T. Yu. Mikhailova, Zh. Tekh. Fiz. 66(10), 109 (1996) [Tech. Phys. 41, 1029 (1996)].

    Google Scholar 

  15. S. D. Gilev, Fiz. Goreniya Vzryva 31(4), 109 (1995).

    Google Scholar 

  16. S. D. Gilev and T. Yu. Mikhailova, Fiz. Goreniya Vzryva 36(6), 153 (2000).

    Google Scholar 

  17. S. D. Gilev, Fiz. Goreniya Vzryva 37(2), 121 (2001).

    Google Scholar 

  18. I. E. Tamm, The Principles of Electricity Theory (Nauka, Moscow, 1989).

    Google Scholar 

  19. V. L. Shevel’kov, Zh. Tekh. Fiz. 16, 207 (1946).

    Google Scholar 

  20. B. Ya. Lyubov, Zh. Tekh. Fiz. 18, 713 (1948).

    Google Scholar 

  21. G. A. Grinberg, Zh. Tekh. Fiz. 21, 382 (1951).

    Google Scholar 

  22. B. Ya. Lyubov, Dokl. Akad. Nauk SSSR 57, 551 (1947).

    MATH  MathSciNet  Google Scholar 

  23. D. V. Redozubov, Zh. Tekh. Fiz. 30, 606 (1960) [Sov. Phys. Tech. Phys. 5, 570 (1960)].

    MathSciNet  Google Scholar 

  24. V. I. Kval’vasser and Ya. F. Rutner, Dokl. Akad. Nauk SSSR 156, 1273 (1964).

    MathSciNet  Google Scholar 

  25. É. M. Kartashov and G. M. Bartenev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 70 (1969).

  26. É. M. Kartashov and G. M. Bartenev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3 (82), 20 (1969).

  27. É. M. Kartashov and G. M. Bartenev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 97 (1970).

  28. É. M. Kartashov and B. Ya. Lyubov, Izv. Akad. Nauk SSSR, Énerg. Transp., No. 6, 83 (1974).

  29. É. M. Kartashov, Analytical Methods in the Theory of Heat Conductivity of Solids (Vysshaya Shkola, Moscow, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 7, 2002, pp. 21–27.

Original Russian Text Copyright © 2002 by Gilev, Mikha\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)lova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D., Mikhailova, T.Y. Electromagnetic field induced by shock compression of a current-carrying conductor. Tech. Phys. 47, 814–820 (2002). https://doi.org/10.1134/1.1495040

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1495040

Keywords

Navigation