Skip to main content
Log in

An intermediate monoclinic phase and electromechanical interactions in xPbTiO3-(1−x)Pb(Zn1/3Nb2/3)O3 crystals

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The elastic matching of phases in the vicinity of the morphotropic phase boundary in xPbTiO3-(1−x)Pb(Zn1/3Nb2/3)O3 crystals is investigated in an external electric field with strength E ‖ [001]. The field dependences of the unit cell parameters of the monoclinic phase are determined experimentally in the range 0≤E≤2 MV/m. The results obtained are used in analyzing specific features in the electromechanical properties of xPbTiO3-(1−x)Pb(Zn1/3Nb2/3)O3 crystals (0.08≲x≲0.09), in which the monoclinic phase is intermediate between the rhombohedral and tetragonal phases and can coexist with these phases. A correlation between the optimum volume concentrations of domains or twins in different two-phases states is revealed and interpreted for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Topolov, L. E. Balyunis, A. V. Turik, et al., Izv. Akad. Nauk, Ser. Fiz. 56(10), 127 (1992).

    Google Scholar 

  2. L. E. Balyunis, V. Yu. Topolov, I. S. Bah, and A. V. Turik, J. Phys.: Condens. Matter 5(9), 1419 (1993).

    Article  ADS  Google Scholar 

  3. A. S. Tarek, V. G. Smotrakov, A. T. Kozakov, et al., Izv. Akad. Nauk, Ser. Fiz. 57(3), 135 (1993).

    Google Scholar 

  4. F. Schmidt, L. Gruber, and K. Knorr, Z. Phys. B 87(1), 127 (1992).

    Article  Google Scholar 

  5. Z.-G. Ye, J.-P. Rivera, and H. Schmid, Ferroelectrics 116(1–4), 251 (1991).

    Google Scholar 

  6. A. V. Gorish, V. P. Dudkevich, M. F. Kupriyanov, A. E. Panich, and A. V. Turik, Piezoelectric Instrument Making, Vol. 1: Physics of Ferroelectric Ceramics (IPRZh “Radiotekhnika,” Moscow, 1999).

    Google Scholar 

  7. H. Fu and R. E. Cohen, Nature (London) 403(6767), 281 (2000).

    ADS  Google Scholar 

  8. D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63(9), 094108 (2001).

  9. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. B 64(6), 060103 (2001).

    Google Scholar 

  10. B. Noheda, J. A. Gonzalo, L. E. Cross, et al., Phys. Rev. B 61(13), 8687 (2000).

    Article  ADS  Google Scholar 

  11. R. Guo, L. E. Cross, S.-E. Park, et al., Phys. Rev. Lett. 84(23), 5423 (2000).

    Article  ADS  Google Scholar 

  12. B. Noheda, D. E. Cox, G. Shirane, et al., Phys. Rev. B 63(1), 014103 (2001).

  13. V. Yu. Topolov and A. V. Turik, Fiz. Tverd. Tela (St. Petersburg) 43(8), 1525 (2001) [Phys. Solid State 43, 1585 (2001)].

    Google Scholar 

  14. S.-E. Park and T. R. Shrout, J. Appl. Phys. 82(4), 1804 (1997).

    ADS  Google Scholar 

  15. D.-S. Paik, S.-E. Park, S. Wada, et al., J. Appl. Phys. 85(2), 1080 (1999).

    Article  ADS  Google Scholar 

  16. V. Yu. Topolov and A. V. Turik, Fiz. Tverd. Tela (St. Petersburg) 43(6), 1080 (2001) [Phys. Solid State 43, 1117 (2001)].

    Google Scholar 

  17. B. Noheda, D. E. Cox, G. Shirane, et al., Phys. Rev. Lett. 86(17), 3891 (2001).

    Article  ADS  Google Scholar 

  18. M. K. Durbin, J. C. Hicks, S.-E. Park, and T. R. Shrout, J. Appl. Phys. 87(11), 8159 (2000).

    Article  ADS  Google Scholar 

  19. S. Kim, S.-I. Yang, J.-K. Lee, and K. Sun, Phys. Rev. B 64(9), 094105 (2001).

  20. G. Xu, H. Luo, H. Xu, and Z. Yu, Phys. Rev. B 64(2), 020102 (2001).

  21. Z.-G. Ye, B. Noheda, M. Dong, et al., Phys. Rev. B 64, 184114 (2001).

  22. J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics 37(1–4), 579 (1981).

    Google Scholar 

  23. S. Wada, S.-E. Park, L. E. Cross, and T. R. Shrout, Ferroelectrics 221(1–4), 71 (2001).

    Google Scholar 

  24. G. Metrat, Ferroelectrics 26(1–4), 801 (1980).

    Google Scholar 

  25. V. Yu. Topolov and Z.-G. Ye, Ferroelectrics 253(1–4), 71 (2001).

    Google Scholar 

  26. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  27. M. K. Durbin, E. W. Jacobs, J. C. Hicks, and S.-E. Park, Appl. Phys. Lett. 74(19), 2848 (1999).

    Article  ADS  Google Scholar 

  28. E. I. Bondarenko, V. Yu. Topolov, and A. V. Turik, Ferroelectrics 110, 53 (1990).

    Google Scholar 

  29. M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99(1–4), 63 (1989).

    Google Scholar 

  30. V. Yu. Topolov, D. Bolten, U. Böttger, and R. Waser, J. Phys. D 34(5), 711 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1295–1301.

Original Russian Text Copyright © 2002 by Topolov, Turik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topolov, V.Y., Turik, A.V. An intermediate monoclinic phase and electromechanical interactions in xPbTiO3-(1−x)Pb(Zn1/3Nb2/3)O3 crystals. Phys. Solid State 44, 1355–1362 (2002). https://doi.org/10.1134/1.1494636

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1494636

Keywords

Navigation