Skip to main content
Log in

Hierarchy of statistical ensembles of nanodefects on the surface of stressed molybdenum

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The evolution of the distribution of nanodefects that are formed under the effect of tensile stresses existing at the surface of polished foils of molybdenum was studied. The nanodefects form four statistical ensembles in which the size distribution is determined by the maximum of the configurational entropy. The energy of formation and the average size of nanodefects in adjacent ensembles differ by a factor of three. When the concentration of nanodefects in one of the ensembles reaches a thermodynamically optimum value of ≈5%, part of the nanodefects annihilates and the other part becomes transformed into nanodefects of the next (higher) hierarchical level. The application of a load to the sample studied continuously generates nanodefects that form the first (lowest-level) ensemble, which leads to periodic oscillations in the concentrations of nanodefects in all four ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vettegren’, S. Sh. Rakhimov, and V. N. Svetlov, Fiz. Tverd. Tela (St. Petersburg) 38(2), 590 (1996) [Phys. Solid State 38, 323 (1996)]; Fiz. Tverd. Tela (St. Petersburg) 38 (4), 1142 (1996) [Phys. Solid State 38, 632 (1996)]; Fiz. Tverd. Tela (St. Petersburg) 39 (9), 1560 (1997) [Phys. Solid State 39, 1389 (1997)]; Fiz. Tverd. Tela (St. Petersburg) 40 (12), 2180 (1998) [Phys. Solid State 40, 1977 (1998)].

    Google Scholar 

  2. V. I. Vettegren, S. Sh. Rakhimov, and V. N. Svetlov, Proc. SPIE 3345, 226 (1997).

    ADS  Google Scholar 

  3. G. Welzel, J. Plessing, and H. Neuhauser, Phys. Status Solidi A 166(3), 791 (1998).

    ADS  Google Scholar 

  4. J. Plessing, Ch. Achmus, H. Neahauser, et al., Z. Metallkd. 88(8), 630 (1997).

    Google Scholar 

  5. V. I. Vettegren’, V. L. Gilyarov, S. Sh. Rakhimov, and V. N. Svetlov, Fiz. Tverd. Tela (St. Petersburg) 40(4), 668 (1998) [Phys. Solid State 40, 614 (1998)].

    Google Scholar 

  6. V. I. Vettegren’, S. Sh. Rakhimov, and V. N. Svetlov, Neorg. Mater. 35(6), 756 (1999).

    Google Scholar 

  7. M. Kugler, A. Hampel, and H. Neuhauser, Phys. Status Solidi A 175(2), 513 (1999).

    ADS  Google Scholar 

  8. Kh. G. Kilian, V. I. Vettegren’, and V. N. Svetlov, Fiz. Tverd. Tela (St. Petersburg) 42(11), 2024 (2000) [Phys. Solid State 42, 2083 (2000)]; Fiz. Tverd. Tela (St. Petersburg) 43 (11), 2107 (2001) [Phys. Solid State 43, 2199 (2001)].

    Google Scholar 

  9. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 43(5), 822 (2001) [Phys. Solid State 43, 854 (2001)].

    Google Scholar 

  10. J. W. Gibbs, Elementary Principles in Statistical Mechanics (Yale Univ. Press, New Haven, Conn., 1902; Gostekhizdat, Moscow, 1946).

    Google Scholar 

  11. B. L. Lavenda, Statistical Physics. A Probabilistic Approach (Wiley, New York, 1997).

    Google Scholar 

  12. H. G. Kilian, R. Metzler, and B. Zink, J. Chem. Phys. 107(12), 8697 (1997).

    ADS  Google Scholar 

  13. H. G. Kilian, M. Koepf, and V. I. Vettegren, Prog. Colloid Polym. Sci. 117(1), 172 (2001).

    Google Scholar 

  14. N. G. Tomilin, E. E. Damaskinskaya, and V. S. Kuksenko, Fiz. Tverd. Tela (St. Petersburg) 36(10), 3101 (1994) [Phys. Solid State 36, 1649 (1994)].

    Google Scholar 

  15. V. Kuksenko, N. Tomilin, E. Damaskinskaja, and D. Lockner, Pure Appl. Geophys. 146(2), 253 (1996).

    Article  Google Scholar 

  16. V. S. Kuksenko, V. S. Ryskin, V. I. Betechtin, and A. I. Slutsker, Int. J. Fract. Mech. 11(4), 829 (1975).

    ADS  Google Scholar 

  17. V. P. Tamuzh and V. S. Kuksenko, Fracture Micromechanics of Polymeric Materials (Zinatne, Riga, 1978).

    Google Scholar 

  18. V. A. Petrov, A. Ya. Bashkarev, and V. I. Vettegren’, Physical Principles for Fracture Prediction of Construction Materials (Politekhnika, St. Petersburg, 1993).

    Google Scholar 

  19. N. M. Emanuel’ and D. G. Knorre, Chemical Kinetics; Homogeneous Reactions (Vysshaya Shkola, Moscow, 1969; Wiley, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1260–1265.

Original Russian Text Copyright © 2002 by Bashkarev, Vettegren’, Svetlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkarev, A.Y., Vettegren’, V.I. & Svetlov, V.N. Hierarchy of statistical ensembles of nanodefects on the surface of stressed molybdenum. Phys. Solid State 44, 1316–1322 (2002). https://doi.org/10.1134/1.1494628

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1494628

Keywords

Navigation