Skip to main content
Log in

Interaction of translational and rotational modes of a molecular impurity in two-dimensional atomic crystals

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The interaction between the translational and rotational degrees of freedom of a diatomic homonu-clear molecule that executes a motion at the site of a two-dimensional close-packed atomic matrix located on a close-packed atomic substrate (a molecular substitutional impurity in the crystal field of the two-dimensional lattice of a solidified rare gas) is investigated theoretically. The relationships describing the effective dynamic properties of an impurity rotator in the presence of translational excitations of its center of inertia are derived in the framework of consistent procedures on the basis of the Lagrangian (the functional-integral method) and Hamiltonian (the canonical-transformation method) formalisms. The inclusion of the translational-rotational interaction leads to a radical change in the inertial properties of the molecule. This manifests itself in a change in the form of the operator for the rotational kinetic energy as compared to the corresponding expression for a free rotator. The inertia tensor components for the molecule become functions of molecular orientation, and the molecule, in terms of rotational motion, transforms into a “parametric rotator” whose effective kinetic energy is represented as a generalized quadratic form of the angular momentum (or the angular velocity) components with a symmetry corresponding to the symmetry of the external crystal field. The translational-rotational interaction also results in the renormalization of the parameters of the crystal potential without a change in its initial form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Lynden-Bell and K. H. Michel, Rev. Mod. Phys. 66(3), 721 (1994).

    Article  ADS  Google Scholar 

  2. A. F. Prikhot’ko, V. G. Manzhelii, I. Ya. Fugol’, et al., in Cryocrystals, Ed. by B. I. Verkin and A. F. Prikhot’ko (Naukova Dumka, Kiev, 1983).

    Google Scholar 

  3. Physics of Cryocrystals, Ed. by V. G. Manzhelii and Yu. A. Freiman (American Inst. of Physics Press, New York, 1996).

    Google Scholar 

  4. C. Ebner and C. C. Sung, Phys. Rev. B 2(6), 2115 (1970).

    Article  ADS  Google Scholar 

  5. R. G. Bohn and C. F. Mate, Phys. Rev. B 2(6), 2121 (1970).

    Article  ADS  Google Scholar 

  6. J. E. Huebler and R. G. Bohn, Phys. Rev. B 17(4), 1991 (1978).

    Article  ADS  Google Scholar 

  7. C. L. Reynolds, Jr. and A. C. Anderson, Phys. Rev. B 22(11), 5547 (1980).

    Article  ADS  Google Scholar 

  8. T. N. Antsygina, K. A. Chishko, and V. A. Slusarev, J. Low Temp. Phys. 111(3/4), 503 (1998).

    Google Scholar 

  9. T. N. Antsygina, V. A. Slusarev, and K. A. Chishko, Zh. Éksp. Teor. Fiz. 114(2), 555 (1998) [JETP 87, 303 (1998)].

    Google Scholar 

  10. J. Manz, J. Am. Chem. Soc. 102(6), 1801 (1980).

    Article  Google Scholar 

  11. J. Manz and K. Mirsky, Chem. Phys. 46(6), 457 (1980).

    Google Scholar 

  12. V. G. Manzhelii, E. A. Kosobutskaya, V. V. Sumarokov, et al., Fiz. Nizk. Temp. 12(2), 151 (1986) [Sov. J. Low Temp. Phys. 12, 86 (1986)].

    Google Scholar 

  13. T. N. Antsygina and V. A. Slusarev, Fiz. Nizk. Temp. 19(1), 67 (1993) [Low Temp. Phys. 19, 48 (1993)].

    Google Scholar 

  14. T. N. Antsygina and V. A. Slusarev, Fiz. Nizk. Temp. 20(3), 255 (1994) [Low Temp. Phys. 20, 202 (1994)].

    Google Scholar 

  15. T. N. Antsygina, K. A. Chishko, and V. A. Slusarev, Phys. Rev. B 55(6), 3548 (1997).

    Article  ADS  Google Scholar 

  16. J. G. Dash, Fiz. Nizk. Temp. 1(7), 839 (1975) [Sov. J. Low Temp. Phys. 1, 401 (1975)].

    Google Scholar 

  17. M. H. W. Chan, A. D. Migone, K. D. Miner, and Z. R. Li, Phys. Rev. B 30, 2681 (1984).

    ADS  Google Scholar 

  18. A. D. Migone, Zhong-Rong Li, M. H. W. Chan, and M. R. Giri, Phys. Rev. B 28(11), 6525 (1983).

    Article  ADS  Google Scholar 

  19. H. You and S. C. Fain, Phys. Rev. Lett. 56(3), 244 (1986).

    Article  ADS  Google Scholar 

  20. R. D. Etters and B. Kuchta, J. Low Temp. Phys. 111(3/4), 272 (1998).

    Article  Google Scholar 

  21. J. Stoltenberg and O. E. Vilches, Phys. Rev. B 22(6), 2920 (1980).

    Article  ADS  Google Scholar 

  22. R. Marx and R. Braun, Solid State Commun. 33(2), 229 (1980).

    Article  Google Scholar 

  23. O. E. Vilches, R. C. Ramos, Jr., and D. A. Ritter, Czech. J. Phys. 46(S1), 397 (1996).

    Google Scholar 

  24. N. S. Sullivan and K. Kim, J. Low Temp. Phys. 113(5/6), 705 (1998).

    Article  Google Scholar 

  25. N. S. Sullivan and K. Kim, J. Low Temp. Phys. 110(1/2), 597 (1998).

    Google Scholar 

  26. N. S. Sullivan and K. Kim, J. Low Temp. Phys. 111(3/4), 533 (1998).

    Article  Google Scholar 

  27. M. Bienfait, G. M. Gay, P. Zeppenfeld, et al., J. Low Temp. Phys. 111(3/4), 555 (1998).

    Article  Google Scholar 

  28. H. Wiechert and K.-D. Kortmann, J. Low Temp. Phys. 111(3/4), 561 (1998).

    Article  Google Scholar 

  29. A. I. Kitaigorodsky, Molecular Crystals (Nauka, Moscow, 1972).

    Google Scholar 

  30. T. N. Antsygina and V. A. Slusarev, Teor. Mat. Fiz. 77, 234 (1988).

    Google Scholar 

  31. M. I. Poltavskaya and K. A. Chishko, Fiz. Nizk. Temp. 26(4), 333 (2000) [Low Temp. Phys. 26, 289 (2000)].

    Google Scholar 

  32. M. I. Poltavskaya and K. A. Chishko, Fiz. Nizk. Temp. 26(8), 837 (2000) [Low Temp. Phys. 26, 615 (2000)].

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  34. D. W. Brown, P. L. Sokol, and S. A. FitzGerald, Phys. Rev. B 59(20), 13258 (1999).

    Google Scholar 

  35. T. B. McRury and J. R. Sams, Mol. Phys. 19(3), 337 (1970).

    Google Scholar 

  36. T. B. McRury and J. R. Sams, Mol. Phys. 19(3), 353 (1970).

    Google Scholar 

  37. T. B. McRury and J. R. Sams, Mol. Phys. 20(1), 49 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 7, 2002, pp. 1215–1223.

Original Russian Text Copyright © 2002 by Antsygina, Poltavskaya, Chishko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antsygina, T.N., Poltavskaya, M.I. & Chishko, K.A. Interaction of translational and rotational modes of a molecular impurity in two-dimensional atomic crystals. Phys. Solid State 44, 1268–1277 (2002). https://doi.org/10.1134/1.1494621

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1494621

Keywords

Navigation