Skip to main content
Log in

Excitons in CdS and CdSe semiconducting quantum wires with dielectric barriers

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Features of the photoluminescence spectra observed for various polarizations and intensities of the pumping radiation and the kinetics of photoluminescence of the CdS and CdSe nanocrystals grown in hollow nanochannels of an Al2O3 matrix are explained in terms of exciton transitions in semiconducting quantum wires with dielectric barriers. The observed exciton transition energies coincide with the values calculated with an allowance for the effects of quantum confinement and the “dielectric enhancement” of excitons. The latter effect is manifested by a significant increase in the Coulomb attraction between electrons and holes (the exciton binding energy exceeds 100 meV) due to a difference between the permittivities of semiconductor and insulator. It is shown that the exciton transition energy remains constant when the quantum wire diameter varies within broad limits. This is related to the fact that a growth in the one-dimensional bandgap width of the quantum wire caused by a decrease in the diameter is compensated by an increase in the exciton binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, Phys. Status Solidi A 164, 3 (1997).

    ADS  Google Scholar 

  2. N. S. Rytova, Dokl. Akad. Nauk SSSR 163, 1118 (1965) [Sov. Phys. Dokl. 10, 754 (1966)].

    Google Scholar 

  3. A. V. Chaplik and M. V. Éntin, Zh. Éksp. Teor. Fiz. 61, 2496 (1971) [Sov. Phys. JETP 34, 1335 (1972)].

    Google Scholar 

  4. L. V. Keldysh, Pis’ma Zh. Éksp. Teor. Fiz. 29, 716 (1979) [JETP Lett. 29, 658 (1979)].

    Google Scholar 

  5. E. Hanamura, N. Nagaosa, M. Rumagai, and T. Takagahara, Mater. Sci. Eng. B 1, 255 (1988).

    Article  Google Scholar 

  6. M. Kumagai and T. Takagahara, Phys. Rev. B 40, 12359 (1989).

    Google Scholar 

  7. D. B. Tran Thoai, R. Zimmermann, M. Grundmann, and D. Bimberg, Phys. Rev. B 42, 5906 (1990).

    Article  ADS  Google Scholar 

  8. L. Wendler and B. Harwig, J. Phys.: Condens. Matter 3, 9907 (1991).

    Article  ADS  Google Scholar 

  9. X. Zhang, Y. Li, Z. Kong, and Ch. Wei, Phys. Rev. B 49, 10432 (1994).

  10. J. Cen, R. Chen, and K. K. Bajai, Phys. Rev. B 50, 10947 (1994).

  11. R. R. Guseinov, Phys. Status Solidi B 125, 237 (1984).

    Google Scholar 

  12. E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, Phys. Rev. B 51, 14370 (1995).

    Google Scholar 

  13. S. Glutsch, F. Bechstedt, W. Wegsheider, and G. Schedelbeck, Phys. Status Solidi A 164, 405 (1997).

    ADS  Google Scholar 

  14. V. S. Babichenko, L. V. Keldysh, and A. P. Silin, Fiz. Tverd. Tela (Leningrad) 22, 1238 (1980) [Sov. Phys. Solid State 22, 723 (1980)].

    Google Scholar 

  15. E. A. Mulyarov and S. G. Tikhodeev, Zh. Éksp. Teor. Fiz. 111, 274 (1997) [JETP 84, 151 (1997)].

    Google Scholar 

  16. T. Takagahara, Phys. Rev. B 47, 4569 (1993).

    ADS  Google Scholar 

  17. V. S. Dneprovskii, E. A. Zhukov, E. A. Mulyarov, and S. G. Tikhodeev, Zh. Éksp. Teor. Fiz. 114, 700 (1998) [JETP 87, 382 (1998)].

    Google Scholar 

  18. E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, Phys. Rev. B 62, 7420 (2000).

    Article  ADS  Google Scholar 

  19. V. N. Bogomolov, Usp. Fiz. Nauk 124, 171 (1978) [Sov. Phys. Usp. 21, 77 (1978)].

    MathSciNet  Google Scholar 

  20. V. Dneprovskii, E. Zhukov, V. Karavanskii, et al., Superlattices Microstruct. 23, 1217 (1998).

    Google Scholar 

  21. S. F. Gavrilov, V. V. Gusev, V. S. Dneprovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70, 216 (1999) [JETP Lett. 70, 216 (1999)].

    Google Scholar 

  22. A. I. Belogorokhov, private communication.

  23. S. V. Nair, S. Sinha, and R. S. Rustagi, Phys. Rev. B 35, 4098 (1987).

    Article  ADS  Google Scholar 

  24. P. Ils, Ch. Greus, A. Forchel, et al., Phys. Rev. B 51, 4272 (1995).

    Article  ADS  Google Scholar 

  25. S. G. Romanov, C. M. Sotomayor-Torres, H. M. Yates, et al., J. Appl. Phys. 82, 380 (1997).

    Article  ADS  Google Scholar 

  26. E. A. Zhukov, Y. Masumoto, E. A. Muljarov, and S. G. Romanov, Solid State Commun. 112, 575 (1999).

    Article  Google Scholar 

  27. S. Benner and H. Haug, Europhys. Lett. 16, 579 (1991).

    ADS  Google Scholar 

  28. S. Benner and H. Haug, Phys. Rev. B 47, 15750 (1993).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 6, 2002, pp. 1362–1369.

Original Russian Text Copyright © 2002 by Dneprovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Zhukov, Shalygina, Lyaskovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Muljarov, Gavrilov, Masumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dneprovskii, V.S., Zhukov, E.A., Shalygina, O.A. et al. Excitons in CdS and CdSe semiconducting quantum wires with dielectric barriers. J. Exp. Theor. Phys. 94, 1169–1175 (2002). https://doi.org/10.1134/1.1493169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1493169

Keywords

Navigation