Skip to main content
Log in

Neutrino interaction with nucleons in the envelope of a collapsing star with a strong magnetic field

  • Gravitation, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction of neutrinos with nucleons in the envelope of a remnant of collapsing system with a strong magnetic field during the passage of the main neutrino flux is investigated. General expressions are derived for the reaction rates and for the energy-momentum transferred to the medium through the neutrino scattering by nucleons and in the direct URCA processes. Parameters of the medium in a strong magnetic field are calculated under the condition of quasi-equilibrium with neutrinos. Numerical estimates are given for the neutrino mean free paths and for the density of the force acting on the envelope along the magnetic field. It is shown that, in a strong toroidal magnetic field, the envelope region partially transparent to neutrinos can acquire a large angular acceleration on the passage time scales of the main neutrino flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1971)]; G. S. Bisnovatyi-Kogan, Physical Problems of the Theory of Star Evolution (Nauka, Moscow, 1989).

    ADS  Google Scholar 

  2. S. E. Woosley, Astrophys. J. 405, 273 (1993); A. Mac-Fadyen and S. E. Woosley, Astrophys. J. 524, 262 (1999).

    Article  ADS  Google Scholar 

  3. M. Ruffert and H.-T. Janka, Astron. Astrophys. 338, 535 (1998).

    ADS  Google Scholar 

  4. H. C. Spruit, Astron. Astrophys. 341, L1 (1998).

    ADS  Google Scholar 

  5. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. of Chicago Press, Chicago, 1996).

    Google Scholar 

  6. S. A. Colgate and R. H. White, Astrophys. J. 143, 626 (1966).

    Article  ADS  Google Scholar 

  7. D. K. Nadyozhin, Astrophys. Space Sci. 49, 399 (1977); 51, 283 (1977); 53, 131 (1978).

    Article  ADS  Google Scholar 

  8. R. C. Duncan and C. Thompson, Astrophys. J. Lett. 392, L9 (1992).

    Article  ADS  Google Scholar 

  9. C. Kouveliotou, T. Strohmayer, K. Hurley, et al., Nature 393, 235 (1998).

    Article  ADS  Google Scholar 

  10. X.-D. Li and E. P.J. van den Heuvel, Astrophys. J. Lett. 513, L45 (1999).

    Article  ADS  Google Scholar 

  11. G. S. Bisnovatyi-Kogan and S. G. Moiseenko, Astron. Zh. 69, 563 (1992) [Sov. Astron. 36, 285 (1992)].

    ADS  Google Scholar 

  12. W. Kluzniak and M. Ruderman, Astrophys. J. Lett. 508, L113 (1998).

    ADS  Google Scholar 

  13. G. S. Bisnovatyi-Kogan, Astron. Astrophys. Trans. 3, 287 (1993).

    Google Scholar 

  14. N. N. Chugai, Pis’ma Astron. Zh. 10, 210 (1984) [Sov. Astron. Lett. 10, 87 (1984)].

    ADS  Google Scholar 

  15. O. F. Dorofeev, V. N. Rodionov, and I. M. Ternov, Pis’ma Zh. Éksp. Teor. Fiz. 40, 159 (1984) [JETP Lett. 40, 917 (1984)].

    Google Scholar 

  16. A. A. Gvozdev and I. S. Ognev, Pis’ma Zh. Éksp. Teor. Fiz. 69, 337 (1999) [JETP Lett. 69, 365 (1999)].

    Google Scholar 

  17. A. Kusenko, G. Segre, and A. Vilenkin, Phys. Lett. B 437, 359 (1998).

    ADS  Google Scholar 

  18. S. J. Hardy and D. B. Melrose, Astrophys. J. 480, 705 (1997).

    Article  ADS  Google Scholar 

  19. F. Arras and D. Lai, Phys. Rev. D 60, 043001 (1999).

  20. D. A. Baiko and D. G. Yakovlev, Astron. Astrophys. 342, 192 (1999).

    ADS  Google Scholar 

  21. L. B. Leinson and A. Perez, JHEP 9809:20 (1998).

  22. G. Raffelt and D. Seckel, Phys. Rev. D 52, 1780 (1995).

    Article  ADS  Google Scholar 

  23. S. Yamada, H.-T. Janka, and H. Suzuki, Astron. Astrophys. 344, 533 (1999).

    ADS  Google Scholar 

  24. D. Lai and Y.-Z. Qian, Astrophys. J. 505, 844 (1998).

    Article  ADS  Google Scholar 

  25. A. V. Kuznetsov and N. V. Mikheev, Zh. Éksp. Teor. Fiz. 118, 863 (2000) [JETP 91, 748 (2000)].

    Google Scholar 

  26. R. Popham, S. E. Woosley, and C. Fryer, Astrophys. J. 518, 356 (1999).

    Article  ADS  Google Scholar 

  27. H. C. Spruit, Astron. Astrophys. 349, 189 (1999).

    ADS  Google Scholar 

  28. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 6, 2002, pp. 1219–1234.

Original Russian Text Copyright © 2002 by Gvozdev, Ognev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gvozdev, A.A., Ognev, I.S. Neutrino interaction with nucleons in the envelope of a collapsing star with a strong magnetic field. J. Exp. Theor. Phys. 94, 1043–1056 (2002). https://doi.org/10.1134/1.1493155

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1493155

Keywords

Navigation