Skip to main content
Log in

Transient optical absorption and luminescence in Li2B4O7 lithium tetraborate

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on a study of the transient optical absorption exhibited by Li2B4O7 (LTB) in the visible and UV spectral regions. Using absorption optical spectroscopy with nanosecond time resolution, it is established that the transient optical absorption (TOA) in these crystals originates from optical transitions in hole centers and that the kinetics of the optical-density relaxation is controlled by interdefect tunneling recombination, which involves these hole centers and electronic Li0 centers representing neutral lithium atoms. At 290 K, the Li0 centers migrate in a thermally stimulated, one-dimensional manner, without carrier ejection into the conduction or valence band. The kinetics of the pulsed LTB cathodoluminescence is shown to be controlled by a relaxation process connected with tunneling electron transfer from a deep center to a small hole polaron migrating nearby, a process followed by the formation of a self-trapped exciton (STE) in an excited state. Radiative annihilation of the STE accounts for the characteristic σ-polarized LTB luminescence at 3.6 eV, whose kinetics is rate-limited by the tunneling electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Komatsu, T. Sugawara, K. Sassa, et al., Appl. Phys. Lett. 70(26), 3492 (1997).

    Article  ADS  Google Scholar 

  2. J. D. Garret, M. Natarajan, and J. E. Greedan, J. Cryst. Growth 41, 225 (1977).

    Google Scholar 

  3. M. Adachi, T. Shiosaki, and A. Kawabata, Jpn. J. Appl. Phys., Part 1 24(S3), 72 (1985).

    Google Scholar 

  4. M. Adachi, S. Yamamichi, M. Ohira, et al., Jpn. J. Appl. Phys., Part 1 28(S28-2), 111 (1989).

    Google Scholar 

  5. T. Kitagawa, K. Higuchi, and K. Kodaira, J. Ceram. Soc. Jpn. 105, 616 (1997).

    Google Scholar 

  6. T. P. Balakireva, V. V. Lebold, V. A. Nefedov, et al., Inorg. Mater. 25(3), 462 (1989).

    Google Scholar 

  7. S. J. Fan, G. S. Shen, W. Wang, et al., J. Cryst. Growth 99(1–4), 811 (1990).

    Google Scholar 

  8. K. Byrappa, V. Rajeev, V. J. Hanumesh, et al., J. Mater. Res. 11(10), 2616 (1996).

    ADS  Google Scholar 

  9. J. Krogh-Moe, Acta Crystallogr. 15(3), 190 (1962).

    Article  Google Scholar 

  10. J. Krogh-Moe, Acta Crystallogr. B 24(2), 179 (1968).

    Article  Google Scholar 

  11. A. É. Aliev, Ya. V. Burak, and I. T. Lyseiko, Izv. Akad. Nauk SSSR, Neorg. Mater. 26(9), 1991 (1990).

    Google Scholar 

  12. S. F. Radaev, N. I. Sorokin, and V. I. Simonov, Fiz. Tverd. Tela (Leningrad) 33(12), 3597 (1991) [Sov. Phys. Solid State 33, 2024 (1991)].

    Google Scholar 

  13. A. O. Matkovskii, D. Yu. Sugak, S. B. Ubizskii, O. I. Shpotyuk, E. A. Chernyi, N. M. Vakiv, and V. A. Mokritskii, Influence of Ionizing Radiations on Electronics Materials (Svit, L’vov, 1994).

    Google Scholar 

  14. Ya. V. Burak, B. N. Kopko, I. T. Lyseiko, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 25(7), 1226 (1989).

    Google Scholar 

  15. I. N. Ogorodnikov, V. A. Pustovarov, A. V. Kruzhalov, et al., Fiz. Tverd. Tela (St. Petersburg) 42(3), 454 (2000) [Phys. Solid State 42, 464 (2000)].

    Google Scholar 

  16. A. Yu. Kuznetsov, L. I. Isaenko, A. V. Kruzhalov, et al., Fiz. Tverd. Tela (St. Petersburg) 41(1), 57 (1999) [Phys. Solid State 41, 48 (1999)].

    Google Scholar 

  17. B. P. Gritsenko, V. Yu. Yakovlev, and Yu. N. Safonov, in Proceedings of All-Union Conference on Modern State and Advanced Aspects of High-Speed Photography, Cinematography, and Metrology of Fast Processes, Moscow, 1978, p. 61.

  18. V. N. Parmon, R. F. Khairutdinov, and K. I. Zamaraev, Fiz. Tverd. Tela (Leningrad) 16(9), 2572 (1974) [Sov. Phys. Solid State 16, 1672 (1974)].

    Google Scholar 

  19. E. F. Dolzhenkova, M. F. Dubovik, A. V. Tolmachev, et al., Pis’ma Zh. Tekh. Fiz. 25(17), 78 (1999) [Tech. Phys. Lett. 25, 709 (1999)].

    Google Scholar 

  20. S. Matyyasik and Yu. V. Shaldin, Fiz. Tverd. Tela (St. Petersburg) 43(8), 1405 (2001) [Phys. Solid State 43, 1464 (2001)].

    Google Scholar 

  21. A. É. Aliev, V. F. Krivorotov, and P. K. Khabibulaev, Fiz. Tverd. Tela (St. Petersburg) 39(9), 1548 (1997) [Phys. Solid State 39, 1378 (1997)].

    Google Scholar 

  22. I. N. Ogorodnikov, A. V. Porotnikov, S. V. Kudyakov, et al., Fiz. Tverd. Tela (St. Petersburg) 39(9), 1535 (1997) [Phys. Solid State 39, 1366 (1997)].

    Google Scholar 

  23. Yu. R. Zakis, L. N. Kantorovich, E. A. Kotomin, V. N. Kuzovkov, I. A. Tale, and A. L. Shlyuger, Models of Processes in Wide-Gap Solids with Defects (Zinatne, Riga, 1991).

    Google Scholar 

  24. A. É. Aliev and R. R. Valetov, Kristallografiya 36(6), 1507 (1991) [Sov. Phys. Crystallogr. 36, 855 (1991)].

    Google Scholar 

  25. A. É. Aliev, I. N. Kholmanov, and P. K. Khabibullaev, Solid State Ionics 118(1–2), 111 (1999).

    Google Scholar 

  26. A. É. Aliev, I. N. Kholmanov, and P. K. Khabibullaev, Dokl. Akad. Nauk 365(2), 178 (1999) [Dokl. Phys. 44, 147 (1999)].

    Google Scholar 

  27. Ch. B. Lushchik and A. Ch. Lushchik, Decay of Electron Excitations with Defect Formation in Solids (Nauka, Moscow, 1989).

    Google Scholar 

  28. U. T. Rogulis and I. K. Vitol, in Electron Processes and Defects in Ionic Crystals (Latv. Univ. im. P. Stuchki, Riga, 1985), pp. 22–23.

    Google Scholar 

  29. A. K. Pikaev, Modern Radiation Chemistry. Solid and Polymers. Applied Aspects (Nauka, Moscow, 1987).

    Google Scholar 

  30. Ya. V. Burak, Ya. O. Dovgii, and I. V. Kityk, Zh. Prikl. Spektrosk. 52(1), 126 (1989).

    Google Scholar 

  31. V. N. Moiseenko, A. V. Vdovin, and Ya. V. Burak, Opt. Spektrosk. 81(4), 620 (1996) [Opt. Spectrosc. 81, 565 (1996)].

    Google Scholar 

  32. A. V. Vdovin, V. N. Moiseenko, and Ya. V. Burak, Opt. Spektrosk. 90(4), 625 (2001) [Opt. Spectrosc. 90, 555 (2001)].

    Google Scholar 

  33. I. N. Ogorodnikov, V. A. Pustovarov, L. I. Isaenko, et al., Nucl. Instrum. Methods Phys. Res. A 448(1–2), 467 (2000).

    ADS  Google Scholar 

  34. S. Iwai, T. Tokizaki, A. Nakamura, et al., Phys. Rev. Lett. 76(10), 1691 (1996).

    Article  ADS  Google Scholar 

  35. E. A. Vasil’chenko, I. A. Kudryavtseva, A. Ch. Lushchik, et al., Fiz. Tverd. Tela (St. Petersburg) 40(7), 1238 (1998) [Phys. Solid State 40, 1128 (1998)].

    Google Scholar 

  36. I. N. Ogorodnikov, V. A. Pustovarov, M. Kirm, et al., Fiz. Tverd. Tela (St. Petersburg) 43(8), 1396 (2001) [Phys. Solid State 43, 1454 (2001)].

    Google Scholar 

  37. M. Martini, C. Furetta, C. Sanipoli, et al., Radiat. Eff. Defects Solids 135(1–4), 133 (1995).

    Google Scholar 

  38. M. Martini, F. Meinardi, L. Kovács, and K. Polgar, Radiat. Prot. Dosim. 65(1–4), 343 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 6, 2002, pp. 1039–1047.

Original Russian Text Copyright © 2002 by Ogorodnikov, Yakovlev, Kruzhalov, Isaenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, I.N., Yakovlev, V.Y., Kruzhalov, A.V. et al. Transient optical absorption and luminescence in Li2B4O7 lithium tetraborate. Phys. Solid State 44, 1085–1092 (2002). https://doi.org/10.1134/1.1485012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1485012

Keywords

Navigation