Skip to main content
Log in

Temperature dependence of the spin-lattice relaxation time for quadrupole nuclei under conditions of NMR line saturation

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The contributions of different mechanisms of nuclear spin-lattice relaxation are experimentally separated for 69Ga and 71Ga nuclei in GaAs crystals (nominally pure and doped with copper and chromium), 23Na nuclei in a nominally pure NaCl crystal, and 27Al nuclei in nominally pure and lightly chromium-doped Al2O3 crystals in the temperature range 80–300 K. The contribution of impurities to spin-lattice relaxation is separated under the condition of additional stationary saturation of the nuclear magnetic resonance (NMR) line in magnetic and electric resonance fields. It is demonstrated that, upon suppression of the impurity mechanism of spin-lattice relaxation, the temperature dependence of the spin-lattice relaxation time T 1 for GaAs and NaCl crystals is described within the model of two-phonon Raman processes in the Debye approximation, whereas the temperature dependence of T 1 for corundum crystals deviates from the theoretical curve for relaxation due to the spin-phonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Khutsishvili, Usp. Fiz. Nauk 87(2), 211 (1965) [Sov. Phys. Usp. 8, 743 (1966)].

    Google Scholar 

  2. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  3. A. R. Kessel’, Nuclear Acoustic Resonance (Nauka, Moscow, 1969).

    Google Scholar 

  4. P. Yu. Efitsenko, V. M. Mikushev, and E. V. Charnaya, Pis’ma Zh. Éksp. Teor. Fiz. 54(10), 583 (1991) [JETP Lett. 54, 587 (1991)].

    Google Scholar 

  5. I. Mavlonazarov, V. M. Mikushev, and E. V. Charnaya, Pis’ma Zh. Éksp. Teor. Fiz. 56(1), 15 (1992) [JETP Lett. 56, 13 (1992)].

    Google Scholar 

  6. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of NMR in One and Two Dimensions (Clarendon, Oxford, 1987; Mir, Moscow, 1990).

    Google Scholar 

  7. E. V. Charnaya, V. M. Mikushev, and E. S. Shabanova, J. Phys.: Condens. Matter 6, 7581 (1994).

    Article  ADS  Google Scholar 

  8. E. V. Charnaya, I. Mavlonazarov, and V. M. Mikushev, J. Magn. Reson., Ser. A 112, 96 (1995).

    Article  Google Scholar 

  9. A. A. Kuleshov, V. M. Mikushev, A. L. Stolypko, et al., Fiz. Tverd. Tela (Leningrad) 28(11), 3262 (1986) [Sov. Phys. Solid State 28, 1837 (1986)].

    Google Scholar 

  10. A. A. Kuleshov, A. L. Stolypko, E. V. Charnaya, and V. A. Shutilov, Dokl. Akad. Nauk SSSR 293(6), 1361 (1987) [Sov. Phys. Dokl. 32, 308 (1987)].

    Google Scholar 

  11. G. L. Antokol’skii and E. V. Charnaya, Fiz. Tverd. Tela (Leningrad) 17(6), 1552 (1975) [Sov. Phys. Solid State 17, 1019 (1975)].

    Google Scholar 

  12. E. V. Charnaya, V. M. Mikushev, A. M. Ulyashev, and D. A. Yas’kov, Physica B (Amsterdam) 292, 109 (2000).

    ADS  Google Scholar 

  13. A. Chandoul, E. V. Charnaya, A. A. Kuleshov, et al., J. Magn. Reson. 135, 113 (1998).

    Article  Google Scholar 

  14. E. R. Andrew, Nuclear Magnetic Resonance (Cambridge Univ. Press, London, 1955; Inostrannaya Literatura, Moscow, 1957).

    Google Scholar 

  15. W. W. Simmons, W. J. O’Sullivan, and W. A. Robinson, Phys. Rev. 127(4), 1168 (1962).

    Article  ADS  Google Scholar 

  16. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997).

    Google Scholar 

  17. V. M. Mikushev and E. V. Charnaya, Nuclear Magnetic Resonance in Solids (Sankt.-Peterb. Gos. Univ., St. Petersburg, 1995).

    Google Scholar 

  18. A. Bakhramov, A. L. Stolypko, E. V. Charnaya, and V. A. Shutilov, Fiz. Tverd. Tela (Leningrad) 28(3), 844 (1986) [Sov. Phys. Solid State 28, 470 (1986)].

    Google Scholar 

  19. B. I. Kochelaev, Zh. Éksp. Teor. Fiz. 37(1), 242 (1959) [Sov. Phys. JETP 10, 171 (1960)].

    Google Scholar 

  20. E. G. Wikner and E. L. Hahn, Bull. Am. Phys. Soc. 3(5), 325 (1958).

    Google Scholar 

  21. J. van Kranandonk, Physica (Amsterdam) 29(10), 781 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 6, 2002, pp. 1001–1005.

Original Russian Text Copyright © 2002 by Mikushev, Ulyashev, Charnaya, Chandoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikushev, V.M., Ulyashev, A.M., Charnaya, E.V. et al. Temperature dependence of the spin-lattice relaxation time for quadrupole nuclei under conditions of NMR line saturation. Phys. Solid State 44, 1044–1049 (2002). https://doi.org/10.1134/1.1485005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1485005

Keywords

Navigation