Skip to main content
Log in

Applicability of the T-matrix method and its modifications

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The range of applicability of the T-matrix method and its modifications for solving the problem if the scattering of electromagnetic radiation by nonspherical, axially symmetric particles is investigated analytically and numerically. The use of this method for calculating the characteristics of scattered radiation in the farfield region (the extinction and scattering cross sections, the scattering indicatrix, etc.) is shown to be appropriate for “weak-Rayleigh-type” particles. This condition is met when the intersection of the analytic continuations of the scattered and internal fields contains a ring with the center at the origin of coordinates. For a reliable calculation of the scattered field in the near-field region, it is necessary that a particle be a “Rayleigh-type” one (i.e., the Rayleigh hypothesis be valid for it). In this case, the singularities of the scattered field must occur inside a sphere lying inside a scatterer. Spheroidal particles are weak-Rayleigh-type ones if their semiaxes ratio is \(a/b < (\sqrt {2 + 1} )\), and they are Rayleigh-type ones if \(a/b < \sqrt 2 \). Numerical calculations for spheroids and Chebyshev particles corroborate these conclusions. However, the indicated boundaries are “ spread” (toward the expansion), because the expansion coefficients for the fields are determined with the use of the reduced (i.e., finite) systems. The limiting sizes of the particles for which the T-matrix method gives plausible results are primarily determined by their geometry (shape).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  2. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystalline Clouds (Gidrometeoizdat, Leningrad, 1984).

    Google Scholar 

  3. V. N. Lopatin and F. Ya. Sid’ko, Introduction to Optics of Cell Suspensions (Nauka, Novosibirsk, 1988).

    Google Scholar 

  4. Acoustic, Electromagnetic, and Elastic Wave Scattering: Focus on the T-matrix Approach, Ed. by V. K. Varadan and V. V. Varadan (Pergamon, New York, 1980).

    Google Scholar 

  5. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

    Google Scholar 

  6. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, 2000).

    Google Scholar 

  7. V. G. Farafonov, Opt. Spektrosk. 88, 70 (2000) [Opt. Spectrosc. 88, 63 (2000)].

    ADS  Google Scholar 

  8. V. G. Farafonov and V. B. Il’in, Opt. Spektrosk. 91, 1021 (2001) [Opt. Spectrosc. 91, 960 (2001)].

    Google Scholar 

  9. V. G. Farafonov, Opt. Spektrosk. 91, 102 (2001) [Opt. Spectrosc. 91, 92 (2001)].

    ADS  Google Scholar 

  10. N. V. Voshchinnikov and V. G. Farafonov, Astrophys. Space Sci. 204, 19 (1993).

    Article  ADS  Google Scholar 

  11. N. V. Voshchinnikov, V. B. Il’in, Th. Henning, et al., J. Quant. Spectrosc. Radiat. Transf. 65, 877 (2000).

    Article  ADS  Google Scholar 

  12. F. M. Schulz, K. Stamnes, and J. J. Stamnes, Appl. Opt. 37, 7875 (1998).

    Article  ADS  Google Scholar 

  13. F. M. Schulz, K. Stamnes, and J. J. Stamnes, J. Opt. Soc. Am. 16, 853 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  14. V. G. Farafonov, Opt. Spektrosk. 90, 826 (2001) [Opt. Spectrosc. 90, 743 (2001)].

    Google Scholar 

  15. V. G. Farafonov, N. V. Voshchinnikov, and V. V. Somsikov, Appl. Opt. 35, 5412 (1996).

    Article  ADS  Google Scholar 

  16. A. G. Kyurkchan, Dokl. Akad. Nauk 325, 273 (1992) [Sov. Phys. Dokl. 37, 338 (1992)].

    MathSciNet  Google Scholar 

  17. A. G. Kyurkchan and A. I. Kleev, Radiotekh. Élektron. (Moscow) 40, 897 (1995).

    Google Scholar 

  18. A. G. Kyurkchan, Radiotekh. Élektron. (Moscow) 45, 1078 (2000).

    Google Scholar 

  19. A. G. Kyurkchan, Radiotekh. Élektron. (Moscow) 31, 1294 (1986).

    MathSciNet  Google Scholar 

  20. V. F. Apel’tsin and A. G. Kyurkchan, Analytical Properties of Wave Fields (Mosk. Gos. Univ., Moscow, 1990).

    Google Scholar 

  21. N. T. Zakharova and M. I. Mishchenko, Appl. Opt. 39, 5052 (2000).

    Article  ADS  Google Scholar 

  22. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1984; Mir, Moscow, 1987).

    Google Scholar 

  23. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960).

    MATH  Google Scholar 

  24. A. Sommerfeld, Partial Differential Equations in Physics (Academic, New York, 1949; Inostrannaya Literatura, Moscow, 1951).

    MATH  Google Scholar 

  25. M. V. Fedoryuk, Asymptotics. Integrals and Series (Nauka, Moscow, 1987).

    MATH  Google Scholar 

  26. L. V. Kantorovich and V. I. Krylow, Approximate Methods of Higher Analysis (Fizmatgiz, Moscow, 1962; Wiley, New York, 1964).

    Google Scholar 

  27. V. G. Farafonov, Diff. Uravn. 18, 1599 (1982).

    MathSciNet  Google Scholar 

  28. V. G. Farafonov, Diff. Uravn. 19, y1765 (1983).

    MathSciNet  Google Scholar 

  29. V. G. Farafonov, V. B. Il’in, and N. V. Voshchinnikov, in Abstracts of Papers of the 6th International Congress on Optical Particle Characterization, Brighton, UK, 2001, p. 79.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 92, No. 5, 2002, pp. 813–825.

Original Russian Text Copyright © 2002 by Farafonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farafonov, V.G. Applicability of the T-matrix method and its modifications. Opt. Spectrosc. 92, 748–760 (2002). https://doi.org/10.1134/1.1481142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1481142

Keywords

Navigation