Skip to main content
Log in

Low-temperature time-resolved vacuum UV spectroscopy of potassium pentaborate crystals

  • Solid-State Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

For the first time, subnanosecond time resolution is attained in the low-temperature (at 7 K) measurements of the photoluminescence (PL) spectra (2–6 eV), the PL excitation spectra (4–32 eV), the PL kinetics, and the reflection spectra (4–21 eV) of undoped potassium pentaborate KB5O8·4H2O (KB5) crystals under selective photoexcitation by synchrotron radiation. The PL peaks associated with the intrinsic defects of the KB5 lattice are detected. The PL bands resulting from radiative annihilation of the localized and self-localized electron excitations are singled out; these excitations are most efficiently photogenerated at the fundamental absorption edge in the region where the free exciton formation is expected. The difference between the PL spectra of the fast and slow components is revealed. An effective low-temperature energy transport over the KB5 hydrogen sublattice is deduced from a drop in efficiency of PL excitation in the interband-transition region as a result of nonradiative energy loss. Long-term vacuum UV irradiation of a KB5 crystal at 7 K gives rise to defects in the hydrogen sublattice, which facilitate localization of the electron excitations and reduce the effective length of their diffusion. This leads to a decrease in the nonradiative energy loss, thus enhancing the efficiency of the PL photoexcitation in the band-to-band transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Nikogosyan and G. G. Gurzadyan, Kvantovaya Élektron. (Moscow) 14, 1529 (1987).

    Google Scholar 

  2. J. A. Paisner, M. L. Spaeth, D. C. Gerstenberger, and I. W. Ruderman, Appl. Phys. Lett. 32, 476 (1978).

    Article  ADS  Google Scholar 

  3. R. C. Ramachandra, R. Gobinathan, and F. D. Gnanam, Cryst. Res. Technol. 28, 453 (1993).

    Article  Google Scholar 

  4. K. Kato, Appl. Phys. Lett. 29, 562 (1976).

    Article  ADS  Google Scholar 

  5. K. Kato, Appl. Phys. Lett. 30, 583 (1977).

    Article  ADS  Google Scholar 

  6. A. G. Arutyunyan, V. G. Atanesyan, K. B. Petrosyan, and K. M. Pokhsraryan, Pis’ma Zh. Tekh. Fiz. 6(5), 27 (1980) [Sov. Tech. Phys. Lett. 6, 120 (1980)].

    Google Scholar 

  7. A. G. Arutyunyan, G. G. Gurzadyan, and R. K. Ispiryan, Kvantovaya Élektron. (Moscow) 16, 2493 (1989).

    Google Scholar 

  8. N. Umemura and K. Kato, Appl. Opt. 35, 5332 (1996).

    ADS  Google Scholar 

  9. F. B. Dunning and R. E. Stickel, Jr., Appl. Opt. 15, 3131 (1976).

    ADS  Google Scholar 

  10. H. Hemmati, J. C. Begquist, and W. M. Itano, AIP Conf. Proc. 90, 485 (1982).

    ADS  Google Scholar 

  11. H. Hemmati, J. C. Bergquist, and W. M. Itano, Opt. Lett. 8(2), 73 (1983).

    ADS  Google Scholar 

  12. R. E. Stickel, Jr. and F. B. Dunning, Appl. Opt. 17, 981 (1978).

    ADS  Google Scholar 

  13. R. E. Stickel, Jr. and F. B. Dunning, Appl. Opt. 17, 2132 (1978).

    Article  ADS  Google Scholar 

  14. S. A. Arakelyan, R. N. Gyuzalyan, and S. B. Sogomonyan, Kvantovaya Élektron. (Moscow) 8, 1576 (1981).

    Google Scholar 

  15. V. Petrov, F. Rotermund, and F. Noack, Electron. Lett. 34, 1748 (1998).

    Article  Google Scholar 

  16. C. F. Dewey, Jr., W. R. Cook, Jr., R. T. Hodgson, and J. J. Wynne, Appl. Phys. Lett. 26, 714 (1975).

    Article  ADS  Google Scholar 

  17. W. H. Zachariasen, Z. Kristallogr. 98, 266 (1937).

    Google Scholar 

  18. W. H. Zachariasen and H. A. Plettinger, Acta Crystallogr. 16, 376 (1963).

    Article  Google Scholar 

  19. W. R. Cook, Jr. and H. Jaffe, Acta Crystallogr. 10, 705 (1957).

    Article  Google Scholar 

  20. J. Krogh-Moe, Acta Crystallogr. 18, 1088 (1965).

    Article  Google Scholar 

  21. J. P. Ashmore and H. E. Petch, Can. J. Phys. 48, 1091 (1970).

    ADS  Google Scholar 

  22. D. Xue and S. Zhang, Chem. Phys. Lett. 301, 449 (1999).

    Article  ADS  Google Scholar 

  23. D. Xue, K. Betzler, H. Hesse, and D. Lammers, Solid State Commun. 114, 21 (2000).

    Article  ADS  Google Scholar 

  24. R. C. Ramachandra, R. Gobinathan, and F. D. Gnanam, Cryst. Res. Technol. 28, 737 (1993).

    Article  Google Scholar 

  25. V. N. Voitsekhovskii, V. P. Nikolaeva, and I. A. Velichko, Kristallografiya 27, 533 (1982) [Sov. Phys. Crystallogr. 27, 322 (1982)].

    Google Scholar 

  26. V. N. Voitsekhovskii, V. P. Nikolaeva, and I. A. Velichko, Kristallografiya 27, 975 (1982) [Sov. Phys. Crystallogr. 27, 585 (1982)].

    Google Scholar 

  27. Li Jun, Li Bing, and Gao Shiyang, J. Chem. Thermodyn. 30, 425 (1998).

    Article  MATH  Google Scholar 

  28. E. N. Fedorova, A. P. Eliseev, and L. I. Isaenko, Zh. Prikl. Spektrosk. 55, 397 (1991).

    Google Scholar 

  29. K. Thamizharasan, S. Xavier Jesu Raja, F. P. Xavier, and P. Sagayaraj, J. Cryst. Growth 218, 323 (2000).

    Article  ADS  Google Scholar 

  30. R. S. Bubnova, I. G. Polyakova, Y. E. Anderson, and S. K. Filatov, Glass Phys. Chem. 25, 183 (1999).

    Google Scholar 

  31. O. A. Aktsipetrov, G. Kh. Kitaeva, and A. N. Penin, Fiz. Tverd. Tela (Leningrad) 20, 402 (1978) [Sov. Phys. Solid State 20, 232 (1978)].

    Google Scholar 

  32. W. R. Cook, Jr. and L. M. Hubby, Jr., J. Opt. Soc. Am. 66, 72 (1976).

    Article  ADS  Google Scholar 

  33. A. Miniewicz, Y. Marqueton, and R. Poprawski, Spectrochim. Acta A 49, 387 (1993).

    Article  Google Scholar 

  34. G. Zimmerer, Nucl. Instrum. Methods Phys. Res. A 308, 178 (1991).

    Article  ADS  Google Scholar 

  35. I. N. Ogorodnikov, V. A. Pustovarov, A. V. Kruzhalov, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 454 (2000) [Phys. Solid State 42, 464 (2000)].

    Google Scholar 

  36. I. N. Ogorodnikov, V. A. Pustovarov, A. V. Kruzhalov, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 1800 (2000) [Phys. Solid State 42, 1846 (2000)].

    Google Scholar 

  37. K. Wu and C. Chen, Appl. Phys. A 54, 209 (1992).

    Article  ADS  Google Scholar 

  38. M. A. Lafortune, M. J. Lake, E. M. Hennig, et al., J. Cryst. Growth 166, 533 (1996).

    Article  Google Scholar 

  39. T. I. Quickenden, S. M. Trotman, and D. F. Sangster, J. Chem. Phys. 77, 3790 (1982).

    Article  ADS  Google Scholar 

  40. S. M. Trotman, T. I. Quickenden, and D. F. Sangster, J. Chem. Phys. 85, 2555 (1986).

    Article  ADS  Google Scholar 

  41. I. N. Ogorodnikov, V. A. Pustovarov, B. V. Shul’gin, et al., Opt. Spektrosk. 91, 243 (2001) [Opt. Spectrosc. 91, 224 (2001)].

    Article  Google Scholar 

  42. T. I. Quickenden, A. J. Matich, M. G. Bakker, et al., J. Chem. Phys. 95, 8843 (1991).

    Article  ADS  Google Scholar 

  43. H. B. Steen and J. A. Holteng, J. Chem. Phys. 63, 2690 (1975).

    Article  ADS  Google Scholar 

  44. A. Scacco, M. Graziani, and U. M. Grassano, J. Lumin. 82, 49 (1999).

    Article  Google Scholar 

  45. M. A. Élango, Elementary Inelastic Radiation-Induced Processes (Nauka, Moscow, 1988; American Inst. of Physics, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 92, No. 5, 2002, pp. 766–774.

Original Russian Text Copyright © 2002 by Ogorodnikov, Pustovarov, Kirm, Kruzhalov, Isaenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, I.N., Pustovarov, V.A., Kirm, M. et al. Low-temperature time-resolved vacuum UV spectroscopy of potassium pentaborate crystals. Opt. Spectrosc. 92, 702–709 (2002). https://doi.org/10.1134/1.1481135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1481135

Keywords

Navigation