Skip to main content
Log in

Superconducting energy gap distribution in c-axis oriented MgB2 thin film from point contact study

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

We have analyzed about a hundred voltage-dependent differential resistance dV/dI(V) curves of metallic point contacts between c-axis-oriented MgB2 thin film and Ag, which exhibit clear Andreev reflection features connected with the superconducting gap. About one half of the curves show the presence of a second larger gap. The histogram of the double gap distribution reveals distinct maxima at 2.4 and 7 meV, while curves with single-gap features result in a more broad maximum at 3.5 meV. The double-gap distribution is in qualitative agreement with the distribution of gap values over the Fermi surface calculated by H. J. Choi et al. (cond-mat/0111183). The data unequivocally show the presence of two gaps: ΔS=2.45±0.15 meV and ΔL=7.0±0.45 meV in MgB2 with the gap ratio ΔLS=2.85±0.15. Our observations further prove a widely discussed multigap scenario for MgB2, where two distinct gaps are seen in the clean limit, while a single averaged gap is present in the dirty one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. G. Karapetrov, M. Javarone, W. K. Kwok, et al., Phys. Rev. Lett. 86, 4374 (2001).

    Article  ADS  Google Scholar 

  3. G. Rubio-Bollinger, H. Suderow, and S. Vieira, Phys. Rev. Lett. 86, 5582 (2001).

    Article  ADS  Google Scholar 

  4. A. Sharoni, I. Felner, and D. Millo, Phys. Rev. B 63, 220508(R) (2001).

  5. P. Seneor, C.-T. Chen, N.-C. Yeh, et al., Phys. Rev. B 65, 012505 (2002).

  6. F. Giubileo, D. Roditchev, W. Sachs, et al., cond-mat/0105146.

  7. F. Giubileo, D. Roditchev, W. Sachs, et al., Phys. Rev. Lett. 87, 177008 (2001).

  8. M. H. Badr, M. Freamat, Y. Sushko, and K.-W. Ng, cond-mat/0110421.

  9. Y. Zhang, D. Kinion, J. Chen, et al., cond-mat/0107478.

  10. H. Schmidt, J. F. Zasadzinski, K. E. Gray, et al., Phys. Rev. B 63, 220504R (2001).

  11. A. Kohen and G. Deutscher, Phys. Rev. B 64, 060506(R) (2001).

  12. A. Plecenik, Š. Beňačka, P. Kúš, et al., Physica C 368, 251 (2002).

    Article  ADS  Google Scholar 

  13. F. Laube, G. Goll, J. Hagel, et al., Europhys. Lett. 56, 296 (2001).

    Article  Google Scholar 

  14. R. S. Gonnelli, A. Calzolari, D. Daghero, et al., cond-mat/0107239.

  15. P. Szabó, P. Samuely, J. Kacmarćik, et al., Phys. Rev. Lett. 87, 137005 (2001).

  16. Y. Bugoslavsky, Y. Miyoshi, G. K. Perkins, et al., cond-mat/0110296.

  17. N. L. Bobrov, P. N. Chubov, Yu. G. Naidyuk, et al., cond-mat/0110006.

  18. C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14(11), R115 (2001).

    Article  ADS  Google Scholar 

  19. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  20. J. Kortus, I. I. Mazin, K. D. Belashchenko, et al., Phys. Rev. Lett. 86, 4656 (2001).

    ADS  Google Scholar 

  21. W. N. Kang, Hyeong-Jin Kim, Eun-Mi Choi, et al., Phys. Rev. Lett. 87, 087002 (2001).

    Google Scholar 

  22. A. Wexler, Proc. Phys. Soc., London 89, 927 (1966).

    Google Scholar 

  23. P. C. Canfield, D. K. Finnemore, S. L. Bud’ko, et al., Phys. Rev. Lett. 86, 2423 (2001).

    Article  ADS  Google Scholar 

  24. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    Article  ADS  Google Scholar 

  25. R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).

    Article  ADS  Google Scholar 

  26. Hyoung Joon Choi, David Roundy, Hong Sun, et al., cond-mat/0111183.

  27. D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko, et al., Phys. Rev. Lett. 86, 2420 (2001).

    Article  ADS  Google Scholar 

  28. A. Brinkman, A. A. Golubov, H. Rogalla, et al., cond-mat/0111115.

  29. V. D. P. Servedio, S.-L. Drechsler, and T. Mishonov, cond-mat/0111434.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 75, No. 5, 2002, pp. 283–286.

Original English Text Copyright © 2002 by Naidyuk,Yanson, Tyutrina, Bobrov, Chubov, Kang, Hyeong-Jin Kim, Eun-Mi Choi, Sung-Ik Lee.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidyuk, Y.G., Yanson, I.K., Tyutrina, L.V. et al. Superconducting energy gap distribution in c-axis oriented MgB2 thin film from point contact study. Jetp Lett. 75, 238–241 (2002). https://doi.org/10.1134/1.1478521

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1478521

PACS numbers

Navigation