Skip to main content
Log in

Three types of flows in the structure of the solar wind

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An experimental study of the source and formation of large-scale streams in the solar wind is presented. Radio-astronomical data from 1998 are compared with optical SOHO observations and solar coronal magnetic fields calculated from Zeeman data obtained at the Wilcox Observatory. A correlation between the geometry of the solar-wind transition region and the strength of coronal magnetic fields is revealed. For the moderate heliolatitudes studied, this correlation divides into three branches corresponding to three types of coronal magnetic-field structures: open structures with field lines escaping into interplanetary space, closed structures with loop-like field lines, and intermediate structures including both open and closed configurations. High-speed streams of solar wind originate in regions with open magnetic structures. These structures are connected with the lateral lobes of streamers at moderate heliolatitudes. Low-speed flows originate above closed magnetic structures, typical of the main bodies of streamers. The lowest-speed solar-wind flows are not associated with coronal streamer structures, and originate in coronal regions with intermediate magnetic configurations simultaneously containing open and closed field lines. In these regions, the white-light corona becomes an extended and amorphous area with high luminosity, which stratifies into a radial structure with narrow stripes at higher resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Lotova, V. N. Obridko, and K. V. Vladimirskii, Astron. Astrophys. 357, 1051 (2000).

    ADS  Google Scholar 

  2. A. S. Krieger, A. F. Timothy, and E. C. Roelof, Sol. Phys. 29, 505 (1973).

    Article  ADS  Google Scholar 

  3. W. M. Neupert and V. Pizzo, J. Geophys. Res. 79, 3701 (1974).

    Google Scholar 

  4. A. I. Efimov, I. V. Chashei, V. I. Shishov, and O. I. Yakovlev, Kosm. Issled. 28, 581 (1990).

    Google Scholar 

  5. R. Schwenn, Physics of the Inner Heliosphere, Ed. by R. Schwenn and E. Marsch (Springer-Verlag, Berlin, 1990), Vol. 2, p. 99.

    Google Scholar 

  6. M. Kojima and T. Kakinuma, Space Sci. Rev. 53, 173 (1990).

    Article  ADS  Google Scholar 

  7. B. J. Rickett and W. A. Coles, J. Geophys. Rev. 96, 1717 (1991).

    ADS  Google Scholar 

  8. A. I. Efimov, Space Sci. Rev. 70, 397 (1994).

    Article  ADS  Google Scholar 

  9. A. P. Rao, S. Ananthakrishnan, V. Balasubramanian, et al., AIP Conf. Proc. 383, 511 (1996).

    Google Scholar 

  10. M. Tokumaru, H. Mori, T. Tanaka, et al., J. Geomagn. Geoelectr. 47, 1113 (1995).

    Google Scholar 

  11. I. S. Veselovsky and O. A. Panasenko, Phys. Chem. Earth (C) 25(1–2), 113 (2000).

    Google Scholar 

  12. N. A. Lotova, D. F. Blums, and K. V. Vladimirskii, Astron. Astrophys. 150, 266 (1985).

    ADS  Google Scholar 

  13. N. A. Lotova, Sol. Phys. 117, 399 (1988).

    ADS  Google Scholar 

  14. R. D. Ekers and L. T. Little, Astron. Astrophys. 10, 310 (1971).

    ADS  Google Scholar 

  15. N. A. Lotova, in Proc. 3rd COSPAR Colloquium: Solar Wind Seven, Ed. by E. Marsch and R. Schwenn (Pergamon, Oxford, 1992), Vol. 3, p. 217.

    Google Scholar 

  16. J. W. Armstrong and R. Woo, Astron. Astrophys. 103, 415 (1981).

    ADS  Google Scholar 

  17. S. L. Scott, W. A. Coles, and G. Bourgois 123, 207 (1983).

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1989).

    Google Scholar 

  19. N. A. Lotova, A. A. Rashkovetskii, P. B. Kazimirskii, et al., Astron. Zh. 66, 114 (1989) [Sov. Astron. 33, 61 (1989)].

    ADS  Google Scholar 

  20. N. A. Lotova and K. V. Vladimirskii, Sol. Phys. 172, 225 (1997).

    Article  ADS  Google Scholar 

  21. P. Janardhan, M. K. Bird, P. Edenhofer, et al., Sol. Phys. 184, 157 (1999).

    Article  ADS  Google Scholar 

  22. J. T. Hoeksema, J. M. Wilcox, and P. H. Scherrer, J. Geophys. Res. 87, 1033 (1982); 88, 9910 (1983).

    ADS  Google Scholar 

  23. V. N. Obridko and B. D. Shelting, Sol. Phys. 137, 167 (1992); 184, 187 (1999).

    Article  ADS  Google Scholar 

  24. N. A. Lotova, K. V. Vladimirskii, I. Yu. Yurovskaya, and O. A. Korelov, Astron. Zh. 72, 757 (1995) [Astron. Rep. 39, 675 (1995)].

    ADS  Google Scholar 

  25. N. R. Sheely, Jr., Y.-M. Wang, S. H. Hawleg, et al., Astrophys. J. 484, 472 (1997).

    ADS  Google Scholar 

  26. N. Srivastava, R. Schwenn, B. Inhester, et al., in Proc. 9th International Solar Wind Conference: Solar Wind Nine, Ed. by S. R. Habbal, R. Esser, J. V. Hollweg, and P. A. Insenberg, AIP Conf. Proc. 471, 115 (1999).

  27. N. A. Lotova, K. V. Vladimirskii, and V. N. Obridko, Phys. Chem. Earth (C) 25(1–2), 121 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 79, No. 4, 2002, pp. 377–384.

Original Russian Text Copyright © 2002 by Lotova, Obridko, Vladimirski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotova, N.A., Obridko, V.N. & Vladimirskii, K.V. Three types of flows in the structure of the solar wind. Astron. Rep. 46, 339–345 (2002). https://doi.org/10.1134/1.1471398

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1471398

Keywords

Navigation