Skip to main content
Log in

The effect of high implant doses and high ion current densities on polyimide film properties

  • Surfaces, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2002

Abstract

Ar+ and Ar2+ ions with energies of 40 and 80 keV are implanted into thin polyimide films. The implant doses and the ion current densities are varied in a wide range between 2.5×1014 and 1.5×1017 cm−2 and between 1 and 16 µA/cm2, respectively. The effect of the implantation parameters on the electrical, paramagnetic, and optical properties of the ion-modified near-surface polymer layer is studied. It is shown that the radiation-stimulated thermolysis of polyimide and its chemical constitution are responsible for a monotonic growth of the electrical conductivity of the layer with increasing ion current at a given implant dose. When the ion current density is fixed, the conductivity grows stepwise with implant dose, whereas the concentration of paramagnetic centers and the optical transmission of the modified layer decrease. The dependences observed are treated within a model of the structural reconfiguration of the polymer carbonized phase formed during the implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The 2000 Nobel Prize in Chemistry (for the Discovery and Development of Conductive Polymers), Press Release, www.nobel.se/chemistry/laureates/2000/press. html.

  2. C. K. Chiang, C. R. Fisher, Y. W. Park, et al., Phys. Rev. Lett. 39, 1098 (1977).

    Article  ADS  Google Scholar 

  3. T. Venkatesan, L. Calcagno, B. S. Elman, et al., in Ion Beam Modification of Insulators, Ed. by P. Mazzoldi and G. W. Arnold (Elsevier, Amsterdam, 1987), pp. 301–379.

    Google Scholar 

  4. G. Marletta and F. Iacona, in Materials and Processes for Surface and Interface Engineering, Ed. by Y. Pauleau (Kluwer, Dordrecht, 1995), pp. 597–640.

    Google Scholar 

  5. R. E. Gied, M. G. Moss, J. Kaufmann, et al., in Electrical and Optical Polymer Systems, Ed. by D. L. Wise, G. E. Wnek, D. J. Trantolo, et al. (Marcel Dekker, New York, 1998), pp. 1011–1030.

    Google Scholar 

  6. V. N. Popok, Poverkhnost, No. 6, 103 (1998); Surf. Investigation 14, 843 (1999).

  7. E. H. Lee, Nucl. Instrum. Methods Phys. Res. B 151, 29 (1999).

    Article  ADS  Google Scholar 

  8. V. B. Odzhaev, I. P. Kozlov, V. N. Popok, et al., Ion Implantation of Polymers (Belaruss. Gos. Univ., Minsk, 1998).

    Google Scholar 

  9. M. Iwaki, Nucl. Instrum. Methods Phys. Res. B 175–177, 368 (2001).

    Google Scholar 

  10. A. N. Aleshin, A. V. Gribanov, A. V. Dobrodumov, et al., Fiz. Tverd. Tela (Leningrad) 31(1), 12 (1989) [Sov. Phys. Solid State 31, 6 (1989)].

    Google Scholar 

  11. A. De Bonis, A. Bearzotti, and G. Marletta, Nucl. Instrum. Methods Phys. Res. B 151, 101 (1999).

    ADS  Google Scholar 

  12. C. Feger, M. M. Khojasteh, and J. E. McGrath, Polyimides, Chemistry and Characterization (Elsevier, Amsterdam, 1989).

    Google Scholar 

  13. J. E. Wertz and J. R. Bolton, Electronic Spin Resonance: Elementary Theory and Practical Applications (McGraw-Hill, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  14. J. F. Ziegler, in The Sopping and Range of Ions in Matter (SRIM-2000), www.research.ibm.com/ionbeams.

  15. V. N. Popok, I. I. Azarko, R. I. Khaibullin, et al., Appl. Phys. A (in press).

  16. J. Davenas, X. L. Xu, G. Boiteux, et al., Nucl. Instrum. Methods Phys. Res. B 39, 754 (1989).

    ADS  Google Scholar 

  17. J. L. Magee and A. Chattejee, J. Phys. Chem. 84, 3529 (1980).

    Article  Google Scholar 

  18. D. Fink, K. Ibel, P. Goppelt, et al., Nucl. Instrum. Methods Phys. Res. B 46, 342 (1990).

    Article  ADS  Google Scholar 

  19. G. R. Rao, Z. L. Wang, and E. H. Lee, J. Mater. Res. 8, 927 (1993).

    ADS  Google Scholar 

  20. I. P. Kozlov, V. B. Odzhaev, I. A. Karpovich, et al., Zh. Prikl. Spektrosk. 65, 377 (1998); J. Appl. Spectr. 65, 390 (1998).

    Google Scholar 

  21. I. P. Kozlov, V. B. Odzhaev, V. N. Popok, et al., Zh. Prikl. Spektrosk. 65, 562 (1998); J. Appl. Spectr. 65, 583 (1998).

    Google Scholar 

  22. V. N. Popok, I. A. Karpovich, V. B. Odzhaev, et al., Nucl. Instrum. Methods Phys. Res. B 48, 1106 (1999).

    ADS  Google Scholar 

  23. A. Miotello and R. Kelly, Nucl. Instrum. Methods Phys. Res. B 122, 458 (1997).

    Article  ADS  Google Scholar 

  24. H. De Cicco, G. Saint-Martin, M. Alurralde, et al., Nucl. Instrum. Methods Phys. Res. B 173, 455 (2001).

    ADS  Google Scholar 

  25. V. Švorčik, R. Endršt, V. Rybka, et al., Eur. Polym. J. 31, 189 (1995).

    Google Scholar 

  26. C. Z. Hu, K. L. De Vris, and J. D. Andrade, Polymer 28, 663 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 72, No. 4, 2002, pp. 88–93.

Original Russian Text Copyright © 2002 by Popok, Azarko, Khaibullin.

An erratum to this article is available at http://dx.doi.org/10.1134/1.1489940.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popok, V.N., Azarko, I.I. & Khaibullin, R.I. The effect of high implant doses and high ion current densities on polyimide film properties. Tech. Phys. 47, 459–464 (2002). https://doi.org/10.1134/1.1470595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1470595

Keywords

Navigation