Skip to main content
Log in

Nonlinear ineraction of an annular electron beam with azimuthal surface waves

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Rukhadze, L. S. Bogdankevich, S. E. Rosinskii, and V. G. Rukhlin, Physics of High-Current Relativistic Electron Beams (Atomizdat, Moscow, 1980).

    Google Scholar 

  2. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in a Plasma (Nauka, Moscow, 1990).

    Google Scholar 

  3. I. N. Onischenko, V. A. Balakirev, A. M. Korostelev, et al., in Proceedings of the 11th International Conference on High Power Particle Beams, Prague, 1996, Vol. 1, p. 426.

  4. M. Fujiwara, O. Komeko, A. Komori, et al., Plasma Phys. Controlled Fusion 41(12B), 157 (1999).

    Article  Google Scholar 

  5. É. P. Kontar’, V. I. Lapshin, and V. N. Mel’nik, Fiz. Plazmy 24, 832 (1998) [Plasma Phys. Rep. 24, 772 (1998)].

    Google Scholar 

  6. C. Krafft and A. S. Volokitin, Plasma Phys. Controlled Fusion 41(12B), 305 (1999).

    Article  Google Scholar 

  7. A. N. Kondratenko and V. M. Kuklin, Foundations of Plasma Electronics (Énergoatomizdat, Moscow, 1988).

    Google Scholar 

  8. R. Ando, V. A. Balakirev, K. Kamada, et al., Fiz. Plazmy 23, 1042 (1997) [Plasma Phys. Rep. 23, 964 (1997)].

    Google Scholar 

  9. R. C. Davidson and K. I. Tsang, Laser Part. Beams 6, 661 (1988).

    Google Scholar 

  10. R. B. Miller, Introduction to the Physics of Intense Charged Particle Beams (Plenum, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  11. A. N. Kondratenko, Surface and Bulk Waves in Bounded Plasma (Énergoatomizdat, Moscow, 1985).

    Google Scholar 

  12. V. A. Girka, I. A. Girka, A. N. Kondratenko, and V. I. Tkachenko, Radiotekh. Élektron. (Moscow) 33, 1031 (1988).

    ADS  Google Scholar 

  13. D. S. Kuznetsov, Special Functions (Vysshaya Shkola, Moscow, 1968).

    Google Scholar 

  14. V. A. Girka, I. A. Girka, V. P. Olefir, and V. I. Tkachenko, Pis’ma Zh. Tekh. Fiz. 17(1), 81 (1991) [Sov. Tech. Phys. Lett. 17, 35 (1991)].

    Google Scholar 

  15. V. A. Girka, I. A. Girka, and V. I. Tkachenko, Zh. Tekh. Fiz. 66(4), 114 (1996) [Tech. Phys. 41, 357 (1996)].

    Google Scholar 

  16. V. A. Girka, A. M. Kondratenko, and A. E. Sporov, Zh. Tekh. Fiz. 69(7), 84 (1999) [Tech. Phys. 44, 814 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 4, 2002, pp. 384–391.

Original Russian Text Copyright © 2002 by Girka, Puzy’kov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girka, V.O., Puzyr’kov, S.Y. Nonlinear ineraction of an annular electron beam with azimuthal surface waves. Plasma Phys. Rep. 28, 351–358 (2002). https://doi.org/10.1134/1.1469176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469176

Keywords

Navigation