Skip to main content
Log in

Polarization mechanism for bremsstrahlung and radiative recombination in a plasma with heavy ions

  • Radiation in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The role of the polarization mechanism in bremsstrahlung and radiative recombination in a plasma with heavy ions is investigated. A study is made of a hot plasma with the electron temperature T e=0.5 keV, containing Fe, Mo, W, and U ions, a relatively cold plasma with a temperature of 0.1–10 eV, and a storage-ring plasma with relatively low-energy electrons. The spectral characteristics, as well as the total cross sections and rate constants for electron-ion recombination, are calculated with allowance for real ionization equilibrium in a plasma. The calculations are carried out using the quasiclassical approximation for electron scattering and the statistical model for the ions, which provides a universal description of the spectra of various chemical elements over a wide temperature range. It is shown that the polarization mechanism contributes to both the effective radiation intensity and the total radiative recombination rate. The temperature range is found where the polarization recombination of electrons in collisions with FeIII ions plays an important role, which indicates the collective behavior of the electron core of an iron ion in this temperature range. Taking into account polarization effects increases the calculated total continuum intensity. As a consequence, the effective plasma charge Z eff determined from this intensity without allowance for polarization effects turns out to be overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polarization Bremsstrahlung from Particles and Atoms, Ed. by V. N. Tsytovich and I. M. Oiringel’ (Nauka, Moscow, 1987).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  3. V. A. Astapenko, V. M. Buimistrov, Yu. A. Krotov, and V. N. Tsytovich, Fiz. Plazmy 15, 202 (1989) [Sov. J. Plasma Phys. 15, 116 (1989)].

    Google Scholar 

  4. V. D. Kirillov, B. A. Trubnikov, and S. A. Trushin, Fiz. Plazmy 1, 218 (1975) [Sov. J. Plasma Phys. 1, 117 (1975)].

    Google Scholar 

  5. V. A. Astapenko, Fiz. Plazmy 27, 503 (2001) [Plasma Phys. Rep. 27, 474 (2001)].

    Google Scholar 

  6. C. M. Lee, R. H. Pratt, and H. K. Tseng, Phys. Rev. A 16, 2169 (1977).

    ADS  Google Scholar 

  7. V. I. Gervids and V. I. Kogan, Pis’ma Zh. Éksp. Teor. Fiz. 22, 308 (1975) [JETP Lett. 22, 142 (1975)].

    Google Scholar 

  8. V. P. Zhdanov and M. I. Chibisov, Zh. Tekh. Fiz. 47, 1804 (1977) [Sov. Phys. Tech. Phys. 22, 1045 (1977)].

    Google Scholar 

  9. V. P. Zhdanov, Fiz. Plazmy 4, 128 (1978) [Sov. J. Plasma Phys. 4, 71 (1978)].

    Google Scholar 

  10. V. I. Kogan and A. B. Kukushkin, Zh. Éksp. Teor. Fiz. 87, 1164 (1984) [Sov. Phys. JETP 60, 665 (1984)].

    ADS  Google Scholar 

  11. V. V. Ivanov, V. I. Kogan, and A. B. Kukushkin, Fiz. Plazmy 15, 1531 (1989) [Sov. J. Plasma Phys. 15, 92 (1989)].

    Google Scholar 

  12. V. I. Kogan, A. B. Kukushkin, and V. S. Lisitsa, Phys. ReP. 213, 1 (1992).

    Article  ADS  Google Scholar 

  13. V. A. Astapenko, L. A. Bureyeva, and V. S. Lisitsa, Phys. Scr. T T86, 62 (2000).

    Article  ADS  Google Scholar 

  14. W. Brandt and S. Lundqvist, Phys. Rev. 139, A612 (1965).

    Article  ADS  Google Scholar 

  15. P. Gombas, Die statistische Theorie des Atoms und ihre Anwendungen (Springer-Verlag, Vienna, 1949; Inostrannaya Literatura, Moscow, 1951).

    Google Scholar 

  16. V. A. Astapenko, L. A. Bureeva, and V. S. Lisitsa, Zh. Éksp. Teor. Fiz. 121(1), 19 (2002) [JETP 94, 12 (2002)].

    Google Scholar 

  17. L. A. Bureyeva and V. S. Lisitsa, J. Phys. B 31, 1477 (1998).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  19. A. D. Ulantsev and V. P. Shevel’ko, Opt. Spektrosk. 65, 1003 (1988) [Opt. Spectrosc. 65, 590 (1988)].

    Google Scholar 

  20. M. Mueller, Nucl. Instrum. Methods Phys. Res. B 99, 58 (1995).

    ADS  Google Scholar 

  21. K. Dick and H. Pepin, J. Appl. Phys. 44, 3284 (1973).

    Google Scholar 

  22. D. E. Post and R. V. Jensen, At. Data Nucl. Data Tables 20, 397 (1977).

    Article  ADS  Google Scholar 

  23. M. Ya. Amus’ya, N. A. Cherepkov, and S. G. Shapiro, Zh. Éksp. Teor. Fiz. 63, 889 (1972) [Sov. Phys. JETP 36, 468 (1972)].

    Google Scholar 

  24. S. N. Nahar, Phys. Rev. A 55, 1980 (1997).

    Article  ADS  Google Scholar 

  25. D. T. Woods, J. M. Shull, and C. L. Sarazin, Astrophys. J. 249, 399 (1981).

    Article  ADS  Google Scholar 

  26. M. Arnaud and J. Raymond, Astrophys. J. 398, 394 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 4, 2002, pp. 337–345.

Original Russian Text Copyright © 2002 by Astapenko, Bureyeva, Lisitsa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astapenko, V.A., Bureyeva, L.A. & Lisitsa, V.S. Polarization mechanism for bremsstrahlung and radiative recombination in a plasma with heavy ions. Plasma Phys. Rep. 28, 303–311 (2002). https://doi.org/10.1134/1.1469171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469171

Keywords

Navigation