Skip to main content
Log in

Numerical modeling of the dynamics of a slow Z-pinch

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A study is made of the method for numerical modeling of pulsed plasma systems by simultaneously solving two-temperature MHD equations and the equations of ionization kinetics. As an example, the method is applied to simulate a relatively slow moderate-density Z-pinch, whose dynamics is well studied experimentally. A specially devised two-dimensional computer code makes use of a promising technique of parallel modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Foord, Y. Maron, G. Davara, et al., Phys. Rev. Lett. 72, 3827 (1994).

    Article  ADS  Google Scholar 

  2. M. E. Foord, Y. Maron, G. Davara, et al., Phys. Rev. Lett. 73, 1190 (1994).

    Article  Google Scholar 

  3. G. Davara, L. Gregorian, E. Kroupp, and Y. Maron, Phys. Plasmas 5, 1068 (1998).

    Article  ADS  Google Scholar 

  4. Yu. G. Kalinin, A. S. Kingsep, V. I. Kosarev, and A. I. Lobanov, Mat. Model. 12(11), 47 (2000).

    Google Scholar 

  5. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems (Nauka, Moscow, 1992, 3rd ed.).

    Google Scholar 

  6. A. S. Kingsep, V. I. Kosarev, A. I. Lobanov, and A. A. Sevast’yanov, Fiz. Plazmy 23, 953 (1997) [Plasma Phys. Rep. 23, 879 (1997)].

    Google Scholar 

  7. R. P. Fedorenko, Introduction to the Computer Physics (MFTI, Moscow, 1994).

    Google Scholar 

  8. L. M. Biberman, B. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Google Scholar 

  9. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  10. V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma (Inst. Khim. Fiz., Chernogolovka, 1984; Hemisphere, New York, 1990).

    Google Scholar 

  11. R. M. More, Adv. At. Mol. Phys. 21, 305 (1985).

    Google Scholar 

  12. D. G. Hummer and D. Michalas, Astrophys. J. 331, 794 (1988).

    Article  ADS  Google Scholar 

  13. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964; Atomizdat, Moscow, 1969).

    Google Scholar 

  14. D. H. Sampson, Phys. Rev. A 34, 986 (1986).

    Article  ADS  Google Scholar 

  15. M. E. Foord and E. Nardi, J. Appl. Phys. 68, 5028 (1990).

    ADS  Google Scholar 

  16. V. A. Bernshtam, Yu. V. Ralchenko, and Y. Maron, J. Phys. B 33, 5025 (2000).

    Article  ADS  Google Scholar 

  17. S. M. Younger and T. D. Mark, in Electron Impact Ionization, Ed. by T. D. Mark and G. H. Dunn (Springer-Verlag, New York, 1985).

    Google Scholar 

  18. I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  19. J. Oxenius, Kinetic Theory of Particles and Photons (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

    Google Scholar 

  21. V. I. Fisher, Yu. V. Ralchenko, A. A. Goldgrish, et al., J. Phys. B 28, 3027 (1995).

    Article  ADS  Google Scholar 

  22. V. P. Shevelko and L. A. Vainshtein, Atomic Physics for Hot Plasmas (Inst. of Physics Press, Bristol, 1993).

    Google Scholar 

  23. V. I. Fisher, Yu. V. Ralchenko, V. A. Bernshtam, et al., Phys. Rev. A 55, 329 (1997).

    Article  ADS  Google Scholar 

  24. D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, 1989; Mir, Moscow, 1998).

    Google Scholar 

  25. E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations, Vol. 1: Nonstiff Problems (Springer-Verlag, Berlin, 1987; Mir, Moscow, 1990).

    Google Scholar 

  26. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, Vol. 2: Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin, 1996; Mir, Moscow, 1999).

    Google Scholar 

  27. A. Nordsieck, Math. Comput. 16, 22 (1962).

    ADS  MATH  MathSciNet  Google Scholar 

  28. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1977).

    Google Scholar 

  29. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984; Mir, Moscow, 1990), Vols. 1, 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 4, 2002, pp. 319–328.

Original Russian Text Copyright © 2002 by Kingsep, Karpov, Lobanov, Maron, Starobinets, Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kingsep, A.S., Karpov, V.E., Lobanov, A.I. et al. Numerical modeling of the dynamics of a slow Z-pinch. Plasma Phys. Rep. 28, 286–295 (2002). https://doi.org/10.1134/1.1469169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469169

Keywords

Navigation