Skip to main content
Log in

Superconductivity in the exactly solvable model of pseudogap state: The absence of self-averaging

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The features of the superconducting state are studied in the simple exactly solvable model of the pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above the temperature T c of the uniform superconducting transition in the entire sample, which is a consequence of non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature range T>T c, superconductivity apparently exists in individual regions (drops). These effects become weaker with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and vanishes as ξcorr → 0, but for finite values of ξcorr, complete self-averaging does not take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

    Article  ADS  Google Scholar 

  2. M. V. Sadovskii, Usp. Fiz. Nauk 171, 539 (2001).

    Google Scholar 

  3. V. M. Loktev, R. M. Quick, and S. G. Sharapov, submitted to Phys. Rep.; cond-mat/0012082

  4. A. I. Posazhennikova and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 632 (1999) [JETP 88, 347 (1999)].

    Google Scholar 

  5. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 117, 613 (2000) [JETP 90, 535 (2000)]; Physica C (Amsterdam) 341–348, 879 (2000).

    Google Scholar 

  6. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 119, 553 (2001) [JETP 92, 480 (2001)].

    Google Scholar 

  7. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 66, 1720 (1974) [Sov. Phys. JETP 39, 845 (1974)]; Fiz. Tverd. Tela (Leningrad) 16, 2504 (1974) [Sov. Phys. Solid State 16, 1632 (1974)].

    Google Scholar 

  8. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 77, 2070 (1979) [Sov. Phys. JETP 50, 989 (1979)].

    Google Scholar 

  9. M. V. Sadovskii and A. A. Timofeev, Sverkhprovodi-most: Fiz., Khim., Tekh. 4, 11 (1991); M. V. Sadovskii and A. A. Timofeev, J. Mosc. Phys. Soc. 1, 391 (1991).

    Google Scholar 

  10. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998); Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  11. É. Z. Kuchinskii and M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 115, 1765 (1999) [JETP 88, 968 (1999)].

    Google Scholar 

  12. L. P. Gor’kov, Zh. Éksp. Teor. Fiz. 37, 1407 (1959) [Sov. Phys. JETP 10, 998 (1959)].

    MathSciNet  Google Scholar 

  13. P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966; Mir, Moscow, 1968).

    Google Scholar 

  14. M. V. Sadovskii, Superconductivity and Localization (World Scientific, Singapore, 2000); Phys. Rep. 282, 225 (1997); Sverkhprovodimost: Fiz., Khim., Tekh. 8, 337 (1995).

    Google Scholar 

  15. L. Bartosch and P. Kopietz, Eur. Phys. J. B 17, 555 (2000).

    Article  ADS  Google Scholar 

  16. P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

    ADS  Google Scholar 

  17. M. V. Sadovskii, Physica C (Amsterdam) 341–348, 811 (2000).

    Google Scholar 

  18. L. Bartosch and P. Kopietz, Phys. Rev. B 60, 15488 (1999).

    Google Scholar 

  19. L. Bartosch, submitted to Ann. Phys. (Leipzig); cond-mat/0102160.

  20. A. J. Millis and H. Monien, Phys. Rev. B 61, 12496 (2000).

    Google Scholar 

  21. S. A. Brazovskii and I. E. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 71, 2338 (1976) [Sov. Phys. JETP 44, 1233 (1976)].

    Google Scholar 

  22. J. Tranquada, J. Phys. Chem. Solids 59, 2150 (1998).

    Google Scholar 

  23. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, 1963).

    Google Scholar 

  24. T. Cren, D. Roditchev, W. Sacks, et al., Phys. Rev. Lett. 84, 147 (2000).

    Article  ADS  Google Scholar 

  25. T. Cren, D. Roditchev, W. Sacks, and J. Klein, submitted to Europhys. Lett.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 3, 2002, pp. 758–769.

Original Russian Text Copyright © 2002 by Kuchinski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Sadovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchinskii, É.Z., Sadovskii, M.V. Superconductivity in the exactly solvable model of pseudogap state: The absence of self-averaging. J. Exp. Theor. Phys. 94, 654–663 (2002). https://doi.org/10.1134/1.1469163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469163

Keywords

Navigation