Skip to main content
Log in

Optical transitions on a type II semiconductor interface in the empirical tight-binding theory

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A tight-binding theory is elaborated for multilayer semiconductor heterostructures of type II in which the states of electrons and holes are dimensionally quantized in adjacent layers and overlap in a narrow region near the interface. The major effort is focused on the calculation of linear photoluminescence polarization induced by the anisotropy of chemical bonds on the ideal interface under the radiation along the axis of growth. An expression for the matrix element of the optical transition on the type-II interface under arbitrary polarization of the emitted photon is obtained. The treatment is based on the sp 3 tight-binding model. The effect of the interface tight-binding parameters considered as free ones on the linear photoluminescence polarization is analyzed. The theory allows for the giant linear photoluminescence polarization discovered in the ZnSe/BeTe heterostructure; it also predicts that the polarization plane usually coincides with the plane containing the chemical bonds at the heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1996).

    Article  ADS  Google Scholar 

  2. O. Krebs, W. Seidel, J. P. André, et al., Semicond. Sci. Technol. 12, 938 (1997).

    Article  ADS  Google Scholar 

  3. O. Krebs, D. Rondi, J. L. Gentner, et al., Phys. Rev. Lett. 80, 5770 (1998).

    Article  ADS  Google Scholar 

  4. E. L. Ivchenko, A. A. Toropov, and P. Voisin, Fiz. Tverd. Tela (St. Petersburg) 40, 1925 (1998) [Phys. Solid State 40, 1748 (1998)].

    Google Scholar 

  5. A. A. Toropov, E. L. Ivchenko, O. Krebs, et al., Phys. Rev. B 63, 035 302 (2001).

  6. E. L. Ivchenko, A. Yu. Kaminskii, and I. L. Aleiner, Zh. Éksp. Teor. Fiz. 104, 3401 (1993) [JETP 77, 609 (1993)].

    Google Scholar 

  7. D. Vignaud, X. Wallart, F. Mollot, and B. Sermage, J. Appl. Phys. 84, 2138 (1998).

    Article  ADS  Google Scholar 

  8. F. Fuchs, J. Schmitz, J. D. Ralston, et al., Superlattices Microstruct. 16, 35 (1994).

    ADS  Google Scholar 

  9. F. Fuchs, J. Schmitz, and N. Herres, in Proceedings of the 23rd International Conference on Physics of Semiconductors, Ed. by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), Vol. 3, p. 1803.

    Google Scholar 

  10. A. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, et al., Acta Phys. Pol. A 94, 479 (1998).

    Google Scholar 

  11. A. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, et al., Phys. Rev. Lett. 83, 3546 (1999).

    Article  ADS  Google Scholar 

  12. D. R. Yakovlev, E. L. Ivchenko, V. P. Kochereshko, et al., Phys. Rev. B 61, 2421 (2000).

    Article  ADS  Google Scholar 

  13. M. Schmidt, M. Grün, S. Petillon, et al., Appl. Phys. Lett. 77, 85 (2000).

    ADS  Google Scholar 

  14. O. Krebs and P. Voisin, Phys. Rev. B 61, 7265 (2000).

    Article  ADS  Google Scholar 

  15. P. O. Löwdin, J. Chem. Phys. 18, 365 (1950).

    Google Scholar 

  16. P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids 44, 365 (1983).

    Google Scholar 

  17. J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).

    Article  ADS  Google Scholar 

  18. Y.-C. Chang, Phys. Rev. B 25, 605 (1982).

    ADS  Google Scholar 

  19. D. J. Stukel, Phys. Rev. B 2, 1852 (1970).

    Article  ADS  Google Scholar 

  20. M. Nagelstrasser, H. Dröge, H.-P. Steinrück, et al., Phys. Rev. B 58, 10 394 (1998).

  21. M. Cruz, M. R. Beltran, C. Wang, et al., Phys. Rev. B 59, 15 381 (1999).

  22. T. G. Pedersen, K. Pedersen, and T. B. Kriestensen, Phys. Rev. B 63, 201101 (2001).

    Google Scholar 

  23. L. C. Lew Yan Voon and L. R. Ram-Mohan, Phys. Rev. B 47, 15 500 (1993).

    Google Scholar 

  24. M. Graf and P. Vogl, Phys. Rev. B 51, 4940 (1995).

    ADS  Google Scholar 

  25. P. V. Santos, P. Etchegoin, M. Cardona, et al., Phys. Rev. B 50, 8746 (1994).

    ADS  Google Scholar 

  26. T. Dumitric, J. S. Graves, and R. E. Allen, Phys. Rev. B 58, 15 340 (1998).

    Google Scholar 

  27. Y.-C. Chang and J. N. Schulman, Phys. Rev. B 31, 2069 (1985).

    ADS  Google Scholar 

  28. Y.-C. Chang and D. E. Aspnes, Phys. Rev. B 41, 12 002 (1990).

  29. G. D. Sanders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992).

    Article  ADS  Google Scholar 

  30. Z. Xu, Solid State Commun. 76, 1143 (1990)

    Google Scholar 

  31. L. M. Ramaniah and S. V. Nair, Phys. Rev. B 47, 7132 (1993).

    Article  ADS  Google Scholar 

  32. A. Selloni, P. Marsella, and R. Del Sole, Phys. Rev. B 33, 8885 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 3, 2002, pp. 747–757.

Original Russian Text Copyright © 2002 by Ivchenko, Nestoklon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivchenko, E.L., Nestoklon, M.O. Optical transitions on a type II semiconductor interface in the empirical tight-binding theory. J. Exp. Theor. Phys. 94, 644–653 (2002). https://doi.org/10.1134/1.1469162

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469162

Keywords

Navigation