Skip to main content
Log in

The electric conductivity of a laminated metal system (alternating magnetic and nonmagnetic layers)

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A set of kinetic equations for the distribution functions of carriers differing both by the energy spectrum and by the spin projection is used to investigate the conductivity of a multilayer sample (alternating layers of magnetic (m) and nonmagnetic (n) metals). The boundary conditions on the interlayer surfaces are derived in an approximation in which the surface scattering is divided into “specular” and “diffuse” scattering and is characterized by scattering parameters (reflection and transmission) which are related to each other by relations dependent on spin projections and on the type of spectrum. The problem on the longitudinal (with respect to the layers) current is treated; situations are analyzed in which the variation in conductivity due to the change of mutual orientation of magnetization in successive m layers from antiparallel to parallel may be of the order of the values of the conductivity proper (the so-called giant magnetoresistance effect). This is possible only in the case of thin (compared with the free path) n layers (in m layers, the ratios of the characteristic dimensions may be arbitrary) and in the mandatory presence of specular surface scattering. Results are given for different possible ratios of Fermi momenta of electron groups and for different fractions of specular and diffuse scattering. The possibility of realizing the effects of both signs is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grunberg, F. Sauerbach, et al., Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  3. P. M. Levy, Solid State Phys. 47, 367 (1994).

    Google Scholar 

  4. M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997).

    Article  ADS  Google Scholar 

  5. J.-Ph. Ansermet, J. Phys.: Condens. Matter 10, 6027 (1998).

    Article  ADS  Google Scholar 

  6. A. Barthelemy, A. Fert, and F. Petroff, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1999), Vol. 12.

    Google Scholar 

  7. P. Zahn, I. Mertig, M. Richter, et al., Phys. Rev. Lett. 75, 2996 (1995).

    Article  ADS  Google Scholar 

  8. W. H. Butler, X.-G. Zhang, D. M. C. Nickolson, et al., Phys. Rev. B 52, 13399 (1995).

    Google Scholar 

  9. M. D. Stiles, J. Appl. Phys. 79, 5805 (1996).

    Article  ADS  Google Scholar 

  10. K. Schep, P. J. Kelly, and G. E. Bauer, Phys. Rev. Lett. 74, 586 (1995); Phys. Rev. B 57, 8907 (1998).

    Article  ADS  Google Scholar 

  11. R. Brown, D. M. C. Nickilson, W. H. Butler, et al., Phys. Rev. B 58, 11146 (1998).

    Google Scholar 

  12. C. Blaas, P. Wienberger, L. Szunyogh, et al., Phys. Rev. B 60, 492 (1999).

    Article  ADS  Google Scholar 

  13. W. F. Egelhoff, Jr., T. Ha, R. D. K. Misra, et al., J. Appl. Phys. 78, 273 (1995).

    Article  ADS  Google Scholar 

  14. H. J. W. Swagten, G. J. Strijker, P. J. H. Bloemen, et al., Phys. Rev. B 53, 9108 (1996).

    Article  ADS  Google Scholar 

  15. H. Hasegawa, Phys. Rev. B 42, 2368 (1990); 43, 10803 (1991); 47, 15073 (1993).

    Article  ADS  Google Scholar 

  16. S. Zhang, P. M. Levy, and A. Fert, Phys. Rev. B 45, 8689 (1992).

    ADS  Google Scholar 

  17. W. H. Butler, X.-G. Zhang, T. C. Shulthess, et al., Phys. Rev. B 56, 14574 (1997).

    Google Scholar 

  18. A. Vedyaev, N. Ryzhanova, B. Dieny, et al., Phys. Rev. B 55, 3728 (1997).

    ADS  Google Scholar 

  19. R. E. Camley and J. Barnas, Phys. Rev. Lett. 63, 664 (1989).

    Article  ADS  Google Scholar 

  20. J. Barnas, A. Fuss, R. E. Camley, et al., Phys. Rev. B 42, 8110 (1990); J. Magn. Magn. Mater. 140–144, 497 (1995).

    ADS  Google Scholar 

  21. J. Inoue, H. Itoh, and S. Maekawa, J. Phys. Soc. Jpn. 60, 376 (1991).

    Google Scholar 

  22. R. Q. Hood and L. M. Falicov, Phys. Rev. B 46, 8287 (1992).

    Article  ADS  Google Scholar 

  23. L. Sheng, D. Y. Xing, Z. D. Wang, et al., Phys. Rev. B 55, 5908 (1997); 58, 6428 (1998).

    Article  ADS  Google Scholar 

  24. K. Majamdar, J. Chen, and S. Hershfield, Phys. Rev. B 57, 2950 (1998).

    ADS  Google Scholar 

  25. E. M. Lifshitz and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  26. T. H. Todorov, E. Yu. Tsymbal, and D. G. Pettifor, Phys. Rev. B 54, R12685 (1996).

  27. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938).

    Google Scholar 

  28. H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  ADS  MATH  Google Scholar 

  29. S. Zhang and P. M. Levy, Phys. Rev. B 57, 5336 (1998).

    ADS  Google Scholar 

  30. P. M. Levy, S. Zhang, and A. Fert, Phys. Rev. Lett. 65, 1643 (1990).

    Article  ADS  Google Scholar 

  31. S. S. Parkin, Appl. Phys. Lett. 63, 1987 (1993).

    Article  ADS  Google Scholar 

  32. J. George, L. Pereira, A. Barthelemy, et al., Phys. Rev. Lett. 72, 408 (1994).

    Article  ADS  Google Scholar 

  33. J.-H. Renard, P. Bruno, R. Megy, et al., Phys. Rev. B 51, 12821 (1995); J. Appl. Phys. 79, 5270 (1996).

  34. R. Y. Gu, Z. D. Wang, and D. Y. Xing, J. Phys. Soc. Jpn. 67, 255 (1998).

    Article  Google Scholar 

  35. K. Rahmouni, A. Dinia, D. Stoeffler, et al., Phys. Rev. B 59, 9475 (1999).

    Article  ADS  Google Scholar 

  36. É. A. Nagaev, Physics of Magnetic Semiconductors (Nauka, Moscow, 1983); Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  37. V. Yu. Irkhin and M. I. Katsnel’son, Usp. Fiz. Nauk 164, 705 (1994) [Phys. Usp. 37, 659 (1994)].

    Google Scholar 

  38. H. Itoh, J. Inoue, and S. Maekawa, Phys. Rev. B 47, 5809 (1993).

    ADS  Google Scholar 

  39. P. M. Levy, J. Magn. Magn. Mater. 140–144, 485 (1995).

    Google Scholar 

  40. A. Fert, P. Grunberg, A. Barthelemy, et al., J. Magn. Magn. Mater. 140–144, 1 (1995).

    Google Scholar 

  41. W. H. Butler, X.-G. Zhang, D. C. M. Nickolson, et al., Phys. Rev. Lett. 76, 3216 (1996).

    Article  ADS  Google Scholar 

  42. K. B. Hathaway and J. R. Cullen, J. Magn. Magn. Mater. 104–107, 1840 (1992).

    Google Scholar 

  43. W. H. Butler, X.-G. Zhang, D. M. C. Nickolson, et al., J. Magn. Magn. Mater. 151, 354 (1995).

    Article  ADS  Google Scholar 

  44. I. Mertig, P. Zahn, M. Richter, et al., J. Magn. Magn. Mater. 151, 363 (1995).

    Article  ADS  Google Scholar 

  45. C. T. Yu, K. Westerholt, K. Theis-Brohl, et al., Phys. Rev. B 57, 2955 (1998).

    ADS  Google Scholar 

  46. The Physics of Metals, Ed. by J. M. Ziman (Cambridge Univ. Press, Cambridge, 1969; Mir, Moscow, 1972), Vol. 1, Chap. 8.

    Google Scholar 

  47. A. P. Cracknell and K. C. Wong, Fermi Surface: Its Concept, Determination, and Use in Physics of Metals (Clarendon, Oxford, 1973; Atomizdat, Moscow, 1978).

    Google Scholar 

  48. D. A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986).

    Google Scholar 

  49. A. K. Zvezdin and S. N. Utochkin, Pis’ma Zh. Éksp. Teor. Fiz. 57, 418 (1993) [JETP Lett. 57, 433 (1993)].

    Google Scholar 

  50. D. Grieg, M. J. Hall, C. Hamond, et al., J. Magn. Magn. Mater. 110, 1239 (1992).

    Google Scholar 

  51. V. Sato, S. Ishio, and T. Miyazaki, IEEE Transl. J. Magn. Jpn. 9, 44 (1994).

    Google Scholar 

  52. S. Li, C. Yu, W. Lai, et al., J. Appl. Phys. 78, 405 (1995).

    ADS  Google Scholar 

  53. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatgiz, Moscow, 1963; Pergamon, New York, 1977), Chap. 17.

    Google Scholar 

  54. V. F. Gantmakher and Y. B. Levinson, Carrier Scattering in Metals and Semiconductors (Nauka, Moscow, 1984; North-Holland, New York, 1987), Chap. 11.

    Google Scholar 

  55. V. I. Okulov and V. V. Ustinov, Fiz. Nizk. Temp. 5, 312 (1979) [Sov. J. Low Temp. Phys. 5, 101 (1979)].

    Google Scholar 

  56. É. I. Rashba, Z. S. Gribnikov, and V. Ya. Kravchenko, Usp. Fiz. Nauk 119, 3 (1976) [Sov. Phys. Usp. 19, 361 (1976)].

    Google Scholar 

  57. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).

    Google Scholar 

  58. L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953; Inostrannaya Literatura, Moscow, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 3, 2002, pp. 703–727.

Original Russian Text Copyright © 2002 by Kravchenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, V.Y. The electric conductivity of a laminated metal system (alternating magnetic and nonmagnetic layers). J. Exp. Theor. Phys. 94, 603–626 (2002). https://doi.org/10.1134/1.1469159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469159

Keywords

Navigation