Skip to main content
Log in

Critical enhancement of nonlinear response in fast photorefractive crystals

  • Nuclei, Particles, and Their Interaction
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that when approaching the spatial subharmonics generation threshold in fast photorefractive crystals (the sillenites, CdTe), a practically unlimited (singular) amplification of the nonlinear photorefractive response is possible, which results in a drastic increase in the spatial amplification of weak signals. A theory of critical spatial amplification is developed. This theory takes into account real attributes of fast photorefractive crystals such as the vectorial nature of wave coupling and nonuniform broadening of resonances owing to light absorption. The theory is applied to the analysis of the observable characteristics of critical enhancement and to optimization of the conditions of experiments aimed at the detection and investigation of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Topics in Applied Physics, Vols. 61 and 62: Photorefractive Materials and Their Applications, Ed. by P. Günter and J. P. Huignard (Springer-Verlag, Berlin, 1988, 1989), Parts I and II.

    Google Scholar 

  2. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

    Google Scholar 

  3. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1991).

    Google Scholar 

  4. P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, J. Appl. Phys. 58, 45 (1985).

    Article  ADS  Google Scholar 

  5. C. S. K. Walsh, A. K. Powell, and T. J. Hall, J. Opt. Soc. Am. B 7, 288 (1990).

    ADS  Google Scholar 

  6. R. F. Kazarinov, R. A. Suris, and B. I. Fuks, Fiz. Tekh. Poluprovodn. (Leningrad) 6, 572 (1972) [Sov. Phys. Semicond. 6, 500 (1972)].

    Google Scholar 

  7. N. G. Zhdanova, M. S. Kagan, R. A. Suris, and B. I. Fuks, Zh. Éksp. Teor. Fiz. 74, 364 (1978) [Sov. Phys. JETP 47, 189 (1978)].

    Google Scholar 

  8. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, J. Opt. Soc. Am. B 10, 1919 (1993).

    ADS  Google Scholar 

  9. S. I. Stepanov and M. P. Petrov, Opt. Commun. 53, 292 (1985).

    ADS  Google Scholar 

  10. A. Blendovskii, J. Otten, K. H. Ringhofer, and B. I. Sturman, Zh. Éksp. Teor. Fiz. 102, 406 (1992) [Sov. Phys. JETP 75, 215 (1992)].

    Google Scholar 

  11. B. I. Sturman, A. I. Chernykh, and E. A. Shamonina, Zh. Éksp. Teor. Fiz. 114, 1034 (1998) [JETP 87, 563 (1998)].

    Google Scholar 

  12. T. E. McClelland, D. J. Webb, B. I. Sturman, and K. H. Ringhofer, Phys. Rev. Lett. 73, 3082 (1994).

    Article  ADS  Google Scholar 

  13. B. I. Sturman, T. E. McClelland, D. J. Webb, et al., J. Opt. Soc. Am. B 12, 1621 (1995).

    ADS  Google Scholar 

  14. B. I. Sturman, M. Aguilar, F. Agullo-Lopez, and K. H. Ringhofer, Phys. Rev. E 55, 6072 (1997).

    Article  ADS  Google Scholar 

  15. E. V. Podivilov, B. I. Sturman, H. C. Pedersen, and P. M. Johansen, Phys. Rev. Lett. 85, 1867 (2000).

    Article  ADS  Google Scholar 

  16. A. Marrakchi, R. V. Johnson, and A. R. Tanguey, J. Opt. Soc. Am. B 3, 321 (1986).

    ADS  Google Scholar 

  17. B. I. Sturman, E. V. Podivilov, V. P. Kamenov, et al., Zh. Éksp. Teor. Fiz. 119, 125 (2001) [JETP 92, 108 (2001)].

    Google Scholar 

  18. D. J. Webb and L. Solymar, Opt. Commun. 83, 287 (1991).

    Article  ADS  Google Scholar 

  19. B. I. Sturman, A. I. Chernykh, V. P. Kamenov, et al., J. Opt. Soc. Am. B 17, 985 (2000).

    ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1996; Pergamon, New York, 1977).

    Google Scholar 

  21. V. P. Kamenov, Y. Hu, E. Shamonina, et al., Phys. Rev. E 62, 2863 (2000).

    Article  ADS  Google Scholar 

  22. S. I. Stepanov, S. M. Shandarov, and N. D. Khat’kov, Fiz. Tverd. Tela (Leningrad) 29, 1454 (1987) [Sov. Phys. Solid State 29, 1754 (1987)].

    Google Scholar 

  23. V. V. Shepelevich, S. M. Shandarov, and A. E. Mendel, Ferroelectrics 110, 235 (1990).

    Google Scholar 

  24. H. Tuovinen, A. A. Kamshilin, and T. Jaaskelainen, J. Opt. Soc. Am. B 14, 3383 (1997).

    ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    Google Scholar 

  26. P. M. Johansen, H. C. Pedersen, E. V. Podivilov, and B. I. Sturman, Phys. Rev. A 58, 1601 (1998).

    Article  ADS  Google Scholar 

  27. I. Richter, A. Grunnet-Jepsen, J. Takacs, and L. Solymar, IEEE J. Quantum Electron. 30, 1645 (1994).

    Article  ADS  Google Scholar 

  28. K. Shcherbin, Appl. Phys. B 71, 123 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 121, No. 3, 2002, pp. 551–564.

Original Russian Text Copyright © 2002 by Gorkunov, Podivilov, Sturman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorkunov, M.V., Podivilov, E.V. & Sturman, B.I. Critical enhancement of nonlinear response in fast photorefractive crystals. J. Exp. Theor. Phys. 94, 470–481 (2002). https://doi.org/10.1134/1.1469145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1469145

Keywords

Navigation