Advertisement

Semiconductors

, Volume 36, Issue 3, pp 307–310 | Cite as

Soliton shape stabilization in a superlattice with next-to-nearest neighbor spectrum in a field of a nonlinear wave

  • S. V. Kryuchkov
  • É. G. Fedorov
Low-Dimensional Systems

Abstract

The effect of an electric field of a nonlinear (cnoidal) electromagnetic wave (pumping field) upon the shape of the solitary electromagnetic wave (soliton) in the quantum semiconductor superlattice with two harmonics of the electron spectrum is studied. Propagation of electromagnetic waves is shown in this case to be described by the modified double sine-Gordon equation. The possibility of the amplification of the pulse and its transformation into the dissipative soliton is noticed. The speed and width of a soliton depend on the presence of the second harmonic in the superlattice electron energy spectrum. The dependence of the dissipative soliton parameters on temperature and pumping field amplitude is also noticed. The possibility of propagation of electromagnetic waves described by solutions of the modified sine-Gordon equation in the superlattice with the spectrum under study is found.

Keywords

Soliton Electromagnetic Wave Electron Spectrum Electromagnetism Nonlinear Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    É. M. Épshtein, Fiz. Tverd. Tela (Leningrad) 19(11), 3456 (1977) [Sov. Phys. Solid State 19, 2020 (1977)].Google Scholar
  2. 2.
    A. P. Tetervov, Ukr. Fiz. Zh. 23(7), 1182 (1978).ADSGoogle Scholar
  3. 3.
    É. M. Belenov, L. A. Grechko, and A. P. Kanavin, Pis’ma Zh. Éksp. Teor. Fiz. 58(5), 331 (1993) [JETP Lett. 58, 333 (1993)].Google Scholar
  4. 4.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989).Google Scholar
  5. 5.
    É. M. Épshtein, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24(10), 1293 (1981).Google Scholar
  6. 6.
    F. G. Bass, S. V. Kryuchkov, and A. I. Shapovalov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29(1), 19 (1995) [Semiconductors 29, 9 (1995)].Google Scholar
  7. 7.
    S. V. Kryuchkov and A. P. Shapovalov, Opt. Spektrosk. 84(2), 286 (1998) [Opt. Spectrosc. 84, 244 (1998)].Google Scholar
  8. 8.
    S. V. Kryuchkov and G. A. Syrodoev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 33(12), 1427 (1990).Google Scholar
  9. 9.
    V. I. Ozhogin and V. L. Preobrazhenskii, Usp. Fiz. Nauk 155(4), 593 (1988) [Sov. Phys. Usp. 31, 713 (1988)].Google Scholar
  10. 10.
    É. M. Belenov, P. G. Kryukov, A. V. Nazarkin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 47(9), 442 (1988) [JETP Lett. 47, 523 (1988)].ADSGoogle Scholar
  11. 11.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  12. 12.
    S. V. Sazonov, Pis’ma Zh. Éksp. Teor. Fiz. 53(8), 400 (1991) [JETP Lett. 53, 420 (1991)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2002

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
  • É. G. Fedorov
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations