Skip to main content
Log in

Kinetics of the reactions involving CF2 and CF in a pure tetrafluoromethane plasma: I. Production of CF2 and CF via electron-impact dissociation

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The kinetics of the production and loss of CF2 and CF radicals in a glow discharge in pure CF4 is investigated by the laser-induced fluorescence method. The effective rate constants for electron-impact dissociation of CF4 molecules along the pathways toward CF2 and CF radicals are determined within a wide range of the reduced electric field (80–250 Td). It is shown that, along with the direct electron-impact dissociation of CF4, the radicals are also produced via the dissociation of the CxFy polymer fluorocarbon particles that form in the plasma. A detailed analysis of the kinetics of the radical production and loss in a modulated discharge made it possible to evaluate the contribution of the electron-impact dissociation of CF4 to the production of radicals and, consequently, to determine the dissociation rate constants \(k_{CF_2 } \) and k CF. A comparison of the obtained \(k_{CF_2 } \) and k CF values with the results of calculations by the Monte Carlo method and the literature data on the cross sections for electron-impact dissociation of CF4 molecules enabled the normalization of these cross sections in the threshold region and the construction of the model cross sections for the electron-impact dissociation of CF4 into neutral products. The calculated cross sections allow a satisfactory description of the experimental results throughout the entire range of E/N under study. A significant scatter (up to 100%) in the experimental data on \(k_{CF_2 } \) and k CF at low values of E/N is related to the considerable contribution of the CxFy polymer molecules (and, probably, CxF +y ions and fluorocarbon grains) to the production of CF2 and CF radicals both in the plasma volume and on the surface of a fluorocarbon film covering the discharge tube wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Booth, Plasma Sources Sci. Technol. 8, 249 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  2. J.-P. Booth, G. Hancock, N. D. Perry, and M. J. Toogood, J. Appl. Phys. 66, 5251 (1989).

    Article  ADS  Google Scholar 

  3. S. G. Hansen, G. Luckman, G. C. Nieman, and S. D. Colson, J. Appl. Phys. 68, 2013 (1990).

    ADS  Google Scholar 

  4. A. D. Tserepi, J. Derouard, J.-P. Booth, and N. Sadeghi, J. Appl. Phys. 81, 2124 (1997).

    Article  ADS  Google Scholar 

  5. A. D. Tserepi, W. Schwarzenbach, J. Derouard, and N. Sadeghi, J. Vac. Sci. Technol. A 15, 3120 (1997).

    Article  ADS  Google Scholar 

  6. S. Hayashi, H. Nakagawa, M. Yamanaka, and M. Kubota, Jpn. J. Appl. Phys. 36, 4845 (1997).

    ADS  Google Scholar 

  7. T. Arai, M. Goto, K. Horikoshi, et al., Jpn. J. Appl. Phys. 38, 4377 (1999).

    Article  ADS  Google Scholar 

  8. K. Sasaki, Y. Kawai, C. Suzuki, and K. Kadota, J. Appl. Phys. 82, 5938 (1997).

    Article  ADS  Google Scholar 

  9. C. Suzuki, K. Sasaki, and K. Kadota, J. Vac. Sci. Technol. A 16, 2222 (1998).

    ADS  Google Scholar 

  10. S. Ito, K. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 33, L1261 (1994).

    ADS  Google Scholar 

  11. M. Haverlag, W. W. Stoffels, E. Stoffels, et al., J. Vac. Sci. Technol. A 14, 384 (1996).

    ADS  Google Scholar 

  12. W. W. Stoffels, E. Stoffels, and K. Tachibana, Rev. Sci. Instrum. 69, 116 (1998).

    Article  ADS  Google Scholar 

  13. W. W. Stoffels, E. Stoffels, and K. Tachibana, J. Vac. Sci. Technol. A 16, 87 (1998).

    Article  ADS  Google Scholar 

  14. V. A. Feoktistov, V. V. Ivanov, A. M. Popov, et al., J. Phys. D 30, 423 (1997).

    Article  ADS  Google Scholar 

  15. N. V. Mantzaris, A. Boudouvis, and E. Gogolides, J. Appl. Phys. 77, 6169 (1995).

    Article  ADS  Google Scholar 

  16. K. Masek, L. Laska, R. D'Agostino, and F. Cramarossa, Beitr. Plasmaphys. 27, 15 (1987).

    Google Scholar 

  17. D. I. Slovetskii and A. A. Deryugin, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1987), Vol. 13, p. 240.

    Google Scholar 

  18. M. Hayashi, Handbook of Plasma Material Science (Ohm, Tokyo, 1992).

    Google Scholar 

  19. L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Ra, J. Phys. Chem. Ref. Data 25, 1341 (1996).

    Article  ADS  Google Scholar 

  20. M.-C. Bordage, P. Segur, L. G. Christoforou, and J. K. Olthoff, J. Appl. Phys. 86, 3558 (1999).

    Article  ADS  Google Scholar 

  21. W. M. Huo and Y.-K. Kim, IEEE Trans. Plasma Sci. 27, 1225 (1999).

    Article  ADS  Google Scholar 

  22. A. V. Vasenkov, J. Appl. Phys. 85, 1222 (1999).

    Article  ADS  Google Scholar 

  23. W. L. Morgan, Plasma Chem. Plasma Process. 12, 447 (1992).

    Google Scholar 

  24. B. Stefanov and P. Pirgov, Plasma Chem. Plasma Process. 13, 665 (1993).

    Article  Google Scholar 

  25. M. Kurihara, Z. L. Petrovic, and T. Makabe, J. Phys. D 33, 2146 (2000).

    Article  ADS  Google Scholar 

  26. R. J. M. M. Snijkers, M. J. M. van Sambeek, M. B. Hoppenbrouwers, and G. M. W. Kroesen, J. Appl. Phys. 79, 8982 (1996).

    Article  ADS  Google Scholar 

  27. V. V. Ivanov, K. S. Klopovskii, D. V. Lopaev, et al., Fiz. Plazmy 25, 716 (1999) [Plasma Phys. Rep. 25, 657 (1999)].

    Google Scholar 

  28. S. Sharpe, B. Hartnett, H. S. Sethi, and D. S. Sethi, J. Photochem. 38, 1 (1987).

    Article  Google Scholar 

  29. S. G. Hansen, G. Luckman, and S. D. Colson, Appl. Phys. Lett. 53, 1588 (1988).

    Article  ADS  Google Scholar 

  30. G. Cunge and J. P. Booth, J. Appl. Phys. 85, 3952 (1999).

    Article  ADS  Google Scholar 

  31. K. Sasaki and K. Kadota, Jpn. J. Appl. Phys. 38, 4383 (1999).

    ADS  Google Scholar 

  32. A. Kono, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, J. Appl. Phys. 70, 2939 (1991).

    Article  ADS  Google Scholar 

  33. J. P. Booth, G. Cunge, P. Chabert, and N. Sadeghi, J. Appl. Phys. 85, 3097 (1999).

    Article  ADS  Google Scholar 

  34. C. Suzuki, K. Sasaki, and K. Kadota, J. Appl. Phys. 82, 5321 (1997).

    ADS  Google Scholar 

  35. K. Miyata, M. Hori, and T. Goto, J. Vac. Sci. Technol. A 14, 2083 (1996).

    ADS  Google Scholar 

  36. K. Sasaki, H. Furukawa, C. Suzuki, and K. Kadota, Jpn. J. Appl. Phys. 38, L954 (1999).

    ADS  Google Scholar 

  37. M. Haverlag, E. Stoffels, W. W. Stoffels, et al., J. Vac. Sci. Technol. A 12, 3102 (1994).

    Article  ADS  Google Scholar 

  38. C. Suzuki, K. Sasaki, and K. Kadota, Jpn. J. Appl. Phys. 36, L824 (1997).

    ADS  Google Scholar 

  39. C. Suzuki, K. Sasaki, and K. Kadota, Jpn. J. Appl. Phys. 37, 5763 (1998).

    ADS  Google Scholar 

  40. I. Ishikawa, S. Sasaki, K. Nagaseki, et al., Jpn. J. Appl. Phys. 36, 4648 (1997).

    ADS  Google Scholar 

  41. J. A. O'Neill and J. Singh, J. Appl. Phys. 77, 497 (1995).

    ADS  Google Scholar 

  42. H. Winters and M. Inokuti, Phys. Rev. A 25, 1420 (1982).

    Article  ADS  Google Scholar 

  43. M. R. Bruce, Ce Ma, and R. A. Bonham, Chem. Phys. Lett. 190, 285 (1992).

    Article  ADS  Google Scholar 

  44. T. Nakano and H. Sugai, Jpn. J. Appl. Phys. 31, 2919 (1992).

    ADS  Google Scholar 

  45. H. Sugai, H. Toyoda, T. Nakano, and M. Goto, Contrib. Plasma Phys. 35, 415 (1995).

    ADS  Google Scholar 

  46. L. Mi and R. A. Bonham, J. Chem. Phys. 108, 1910 (1998).

    ADS  Google Scholar 

  47. S. Motlagh and J. H. Moore, J. Chem. Phys. 109, 432 (1998).

    Article  ADS  Google Scholar 

  48. H. Nishimura, W. M. Huo, M. A. Ali, and Y.-K. Kim, J. Chem. Phys. 110, 3811 (1999).

    Article  ADS  Google Scholar 

  49. A. V. Vasenkov, in Proceedings of the XXIV International Conference on Phenomena in Ionized Gases, ICPIG, 1999, Vol. IV, p. 159.

  50. M. R. Bruce and R. A. Bonham, Int. J. Mass Spectrom. Ion Processes 123, 97 (1993).

    Article  ADS  Google Scholar 

  51. R. A. Bonham, Jpn. J. Appl. Phys. 33, 4157 (1994).

    Article  ADS  Google Scholar 

  52. K. Stephan, H. Deutsch, and T. D. Mark, J. Chem. Phys. 83, 5712 (1985).

    Article  ADS  Google Scholar 

  53. T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 30, 2908 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 3, 2002, pp. 257–271.

Original Russian Text Copyright © 2002 by Ivanov, Klopovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Lopaev, Proshina, Rakhimov, Rakhimova, Rulev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.V., Klopovskii, K.S., Lopaev, D.V. et al. Kinetics of the reactions involving CF2 and CF in a pure tetrafluoromethane plasma: I. Production of CF2 and CF via electron-impact dissociation. Plasma Phys. Rep. 28, 229–242 (2002). https://doi.org/10.1134/1.1458988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458988

Keywords

Navigation