Skip to main content
Log in

The dielectric response of quantum paraelectrics containing dipole impurities

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The presence of even a very small concentration of slowly reoriented dipole impurities in a quantum paraelectric leads to strong changes in the dielectric response of the sample. This is manifested by the appearance of a giant dielectric susceptibility, colossal frequency dispersion, and several peaks in the temperature dependence of the susceptibility; in addition, the temperature dependence of the relaxation time deviates from exponential. The experimental results are presented for KTaO3 samples slightly or moderately doped with lithium. General relationships between the dielectric response and the concentration of impurities, the temperature, and the frequency are established. A theory is proposed which qualitatively explains the observed complex phenomena and sometimes quantitatively describes the results with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. T. Höchli, K. Knorr, and A. Loidl, Adv. Phys. 39, 405 (1990).

    Article  ADS  Google Scholar 

  2. A. B. Rechester, Zh. Éksp. Teor. Fiz. 60, 782 (1971) [Sov. Phys. JETP 33, 423 (1971)].

    Google Scholar 

  3. D. E. Khmel’nitskii and V. L. Shneerson, Fiz. Tverd. Tela (Leningrad) 13, 832 (1971) [Sov. Phys. Solid State 13, 687 (1971)].

    Google Scholar 

  4. V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectricity (Nauka, Moscow, 1973).

    Google Scholar 

  5. J. H. Barrett, Phys. Rev. 86, 118 (1952).

    Article  ADS  Google Scholar 

  6. F. Farhi, A. K. Tagantsev, R. Currat, et al., Eur. Phys. J. B 15, 615 (2000).

    Article  ADS  Google Scholar 

  7. S. A. Prosandeev, W. Kleemann, and J. Dec, Integr. Ferroelectr. 32, 979 (2001).

    Google Scholar 

  8. O. E. Kvyatkovskii, Fiz. Tverd. Tela (St. Petersburg) 43, 1345 (2001) [Phys. Solid State 43, 1401 (2001)].

    Google Scholar 

  9. B. E. Vugmeister and M. D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).

    Article  ADS  Google Scholar 

  10. A. Bussmann-Holder and K. H. Michel, Phys. Rev. Lett. 80, 2173 (1998).

    Article  ADS  Google Scholar 

  11. V. S. Vikhnin, Fiz. Tverd. Tela (Leningrad) 26, 1495 (1984) [Sov. Phys. Solid State 26, 552 (1984)].

    Google Scholar 

  12. S. A. Prosandeev, V. A. Trepakov, M. E. Savinov, and S. E. Kapphan, J. Phys.: Condens. Matter 13, 719 (2001).

    ADS  Google Scholar 

  13. W. Kleemann, J. Dec, Y. G. Wang, et al., J. Phys. Chem. Solids 61, 167 (2000).

    ADS  Google Scholar 

  14. S. A. Prosandeev, W. Kleemann, and J. Dec, J. Phys.: Condens. Matter 13, 5957 (2001).

    ADS  Google Scholar 

  15. Y. Girshberg and Y. Yacoby, J. Phys.: Condens. Matter 11, 9807 (1999).

    Article  ADS  Google Scholar 

  16. V. Trepakov, F. Smutny, V. Vikhnin, et al., J. Phys.: Condens. Matter 7, 3765 (1995).

    Article  ADS  Google Scholar 

  17. D. Rytz and H. J. Scheel, J. Cryst. Growth 59, 486 (1982).

    Article  Google Scholar 

  18. J. D. Axe, J. Harada, and G. Shirane, Phys. Rev. B 1, 1227 (1970).

    ADS  Google Scholar 

  19. V. G. Vaks, Zh. Éksp. Teor. Fiz. 54, 910 (1968) [Sov. Phys. JETP 27, 486 (1968)].

    Google Scholar 

  20. G. Shirane, R. Nathans, and V. J. Minkiewicz, Phys. Rev. 157, 396 (1967).

    Article  ADS  Google Scholar 

  21. G. V. Belokopytov, Ferroelectrics 168, 69 (1998).

    Google Scholar 

  22. R. Migoni, H. Bilz, and D. Bauerle, Phys. Rev. Lett. 37, 1155 (1976).

    Article  ADS  Google Scholar 

  23. A. V. Turik and A. G. Khasabov, J. Phys.: Condens. Matter 13, 1323 (2001).

    Article  ADS  Google Scholar 

  24. S. A. Prosandeev and A. I. Riabchinski, J. Phys.: Condens. Matter 8, 505 (1996).

    ADS  Google Scholar 

  25. H. Vogt, J. Phys.: Condens. Matter 7, 5913 (1995).

    Article  ADS  Google Scholar 

  26. S. R. Andrews, J. Phys. C 18, 1357 (1985).

    ADS  Google Scholar 

  27. P. Doussineau, Y. Farssi, C. Frenos, et al., Europhys. Lett. 24, 415 (1993).

    ADS  Google Scholar 

  28. M. Exner, C. R. A. Catlow, H. Donnerbers, and O. Schrimer, J. Phys.: Condens. Matter 6, 3379 (1994).

    ADS  Google Scholar 

  29. R. I. Eglitis, A. V. Postnikov, and G. Borstel, Phys. Rev. B 55, 12 976 (1997).

    Google Scholar 

  30. I. Tupicyn, A. Dejneka, V. Trepakov, et al., Ferroelectrics 237, 9 (2000).

    Google Scholar 

  31. Yu. A. Firsov, Polarons (Nauka, Moscow, 1975).

    Google Scholar 

  32. G. I. Skanavi, Physics of Dielectrics (Gostekhizdat, Leningrad, 1949).

    Google Scholar 

  33. W. Kleemann, S. Kütz, and D. Rytz, Europhys. Lett. 4, 239 (1987).

    ADS  Google Scholar 

  34. W. Prusseit-Elffroth and F. Schwabl, Appl. Phys. A: Solids Surf. A51, 361 (1990).

    Google Scholar 

  35. S. A. Prosandeev, V. S. Vikhnin, and S. Kapphan, Eur. Phys. J. B 15, 469 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 2, 2002, pp. 489–503.

Original Russian Text Copyright © 2002 by Prosandeev, Trepakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosandeev, S.A., Trepakov, V.A. The dielectric response of quantum paraelectrics containing dipole impurities. J. Exp. Theor. Phys. 94, 419–430 (2002). https://doi.org/10.1134/1.1458493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458493

Keywords

Navigation