Skip to main content
Log in

Dielectric relaxation and ferroelectricity in Cd2Nb2O7 pyrochlore

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dielectric dispersion of Cd2Nb2O7 pyrochlore in a weak electric field was studied in a broad frequency range (100 Hz to 13 MHz) using the crystal samples slowly cooled (0.5 K/min) in the temperature interval from 300 to 80 K. As the temperature decreased down to T c=196 K and T max∼190 K, the dielectric permittivity exhibited deviation from the Curie-Weiss law. It is suggested that this behavior is related to the development of a short-range correlation between microscopic polar regions formed at TT +max . The local order parameter q(T) ∼ 〈P i P j 1/2 was calculated using the permittivity ε′(T) measured at various frequencies. The variation of this parameter is compared to that of the spontaneous polarization P s (T) determined from the measurements of a pyroelectric current in the external electric field E dc =0.95 kV/cm. In the frequency range from 100 Hz to 13 MHz, the dispersion of the dielectric response in the temperature region of 180–192 K is characteristic of a relaxator ferroelectric featuring a glasslike behavior. The parameters of this state were determined, including the activation energy of the polarization fluctuations (E a ≈0.01 eV), the relaxation rate at T → ∞ (f 0=1.9×1012 Hz), and the polarization fluctuation freezing temperature (T f =183 K). In Cd2Nb2O7 pyrochlore, in contrast to the known relaxator ferroelectrics of the PMN type studied previously, this state coexists with the normal ferroelectric state appearing at T c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Sol. St. Chem. 15, 55 (1983).

    Google Scholar 

  2. N. N. Kolpakova, I. L. Shul’pina, M. P. Shcheglov, et al., Ferroelectrics 240, 265 (2000).

    Google Scholar 

  3. A. W. Sleight, J. L. Gillson, J. F. Weiher, and W. Bindloss, Sol. St. Comm. 14, 357 (1974).

    Article  Google Scholar 

  4. P. C. Donohue, J. M. Longo, R. D. Rosenstein, and L. Katz, Inorg. Chem. 4, 1152 (1965).

    Google Scholar 

  5. F. Brisse, D. J. Stewart, V. Seidl, and O. Knop, Can. J. Chem. 50, 3648 (1972).

    Google Scholar 

  6. K. Lukaszewicz, A. Pietraszko, J. Stepien-Damm, and N. N. Kolpakova, Mater. Res. Bull. 29, 987 (1994).

    Article  Google Scholar 

  7. R. A. McCauley, J. Appl. Phys. 51, 290 (1980).

    Article  ADS  Google Scholar 

  8. N. N. Kolpakova, A. Pietraszko, S. Waplak, and L. Szczepanska, Sol. St. Comm. 79, 707 (1991).

    Article  Google Scholar 

  9. A. M. Sleight and J. D. Bierlein, Sol. St. Comm. 18, 163 (1976).

    Article  Google Scholar 

  10. N. N. Kolpakova, M. Wiesner, G. Kugel, and P. Bourson, Ferroelectrics 190, 179 (1997); 201, 107 (1997).

    Google Scholar 

  11. Ch. Ang, R. Guo, A. S. Bhalla, and L. E. Cross, J. Appl. Phys. 87, 7452 (2000).

    ADS  Google Scholar 

  12. V. A. Isupov and G. I. Tarasova, Fiz. Tverd. Tela (Leningrad) 25, 1018 (1983) [Sov. Phys. Solid State 25, 587 (1983)]; Fiz. Tverd. Tela (Leningrad) 25, 1013 (1983) [Sov. Phys. Solid State 25, 584 (1983)].

    Google Scholar 

  13. F. M. Salaev, L. S. Kamzina, N. N. Krainik, et al., Fiz. Tverd. Tela (Leningrad) 25, 163 (1983) [Sov. Phys. Solid State 25, 89 (1983)].

    Google Scholar 

  14. S. L. Swartz, C. A. Randall, and A. S. Bhalla, J. Am. Ceram. Soc. 72, 637 (1989).

    Article  Google Scholar 

  15. D. Viehland, M. Wuttig, and L. E. Cross, Ferroelectrics 120, 71 (1991).

    Google Scholar 

  16. N. N. Kolpakova, I. L. Shul’pina, L. Szczepanska, and P. Piskunowich, Pis’ma Zh. Tekh. Fiz. 23(24), 64 (1997) [Tech. Phys. Lett. 23, 972 (1997)].

    Google Scholar 

  17. Z. G. Ye, N. N. Kolpakova, J.-P. Rivera, and H. Schmid, Ferroelectrics 124, 275 (1991).

    Google Scholar 

  18. N. N. Kolpakova, M. Wiesner, I. L. Shul’pina, et al., Ferroelectrics 185, 131 (1996).

    Google Scholar 

  19. N. N. Kolpakova, L. Szczepanska, I. L. Shul’pina, et al., Ferroelectrics 190, 173 (1997).

    Google Scholar 

  20. G. A. Smolenskii, N. N. Kolpakova, S. A. Kizhaev, et al., Fiz. Tverd. Tela (Leningrad) 26, 989 (1984) [Sov. Phys. Solid State 26, 604 (1984)].

    Google Scholar 

  21. P. P. Markovin, R. V. Pisarev, E. S. Sher, and B. N. Shermatov, Fiz. Tverd. Tela (Leningrad) 25, 3642 (1983) [Sov. Phys. Solid State 25, 2096 (1983)].

    Google Scholar 

  22. N. N. Kolpakova, S. Waplak, and W. Bednarski, J. Phys.: Condens. Matter 10, 9309 (1998).

    Article  ADS  Google Scholar 

  23. A. Kuster, Dissertation, Doctor der Naturwissenschaften (Eberhard-Karls-Universität zu Tübingen, Tübingen, Germany, 1992).

    Google Scholar 

  24. N. N. Kolpakova, B. Hilczer, and M. Wiesner, Phase Transit. 47, 113 (1994).

    Google Scholar 

  25. F. Chu, I. M. Reaney, and N. Setter, J. Appl. Phys. 77, 1671 (1995).

    ADS  Google Scholar 

  26. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B 46, 8003 (1992); Philos. Mag. B 64, 335 (1991).

    ADS  Google Scholar 

  27. D. Viehland and J.-F. Li, J. Appl. Phys. 75, 1705 (1994).

    ADS  Google Scholar 

  28. G. Burns and F. H. Dacol, Sol. St. Comm. 48, 853 (1983); Phys. Rev. B 28, 2527 (1983).

    Article  Google Scholar 

  29. E. Aleshin and R. Roy, J. Am. Ceram. Soc. 45, 18 (1962).

    Google Scholar 

  30. V. A. Isupov, G. I. Golovshchikova, and I. E. Myl’nikova, Ferroelectrics 8, 507 (1974).

    Google Scholar 

  31. D. Viehland, J. F. Li, S. J. Jang, et al., Phys. Rev. B 46, 8013 (1992).

    ADS  Google Scholar 

  32. I. L. Shul’pina, N. N. Kolpakova, M. P. Shcheglov, and A. O. Lebedev, Pis’ma Zh. Tekh. Fiz. 25(14), 26 (1999) [Tech. Phys. Lett. 25, 561 (1999)].

    Google Scholar 

  33. F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon, New York, 1962), p. 29.

    Google Scholar 

  34. E. V. Colla, E. Yu. Koroleva, N. M. Okuneva, and S. B. Vakhrushev, Ferroelectrics 184, 209 (1996).

    Google Scholar 

  35. N. N. Kolpakova, R. Margraf, and M. Polomska, J. Phys.: Condens. Matter 6, 2787 (1994).

    Article  ADS  Google Scholar 

  36. N. Yasuda, S. Fujimoto, K. Tanaka, and T. Hachiga, J. Phys. D 17, 2069 (1984).

    ADS  Google Scholar 

  37. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).

    Article  ADS  Google Scholar 

  38. Ch. Ang, L. E. Cross, R. Guo, and A. S. Bhalla, Appl. Phys. Lett. 77, 732 (2000).

    ADS  Google Scholar 

  39. A. W. Sleight, Inorg. Chem. 7, 1704 (1968).

    Google Scholar 

  40. H. Vogel, Z. Phys. 22, 695 (1921); G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Google Scholar 

  41. E. Courtens, Phys. Rev. Lett. 52, 69 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 2, 2002, pp. 462–470.

Original Russian Text Copyright © 2002 by Kolpakova, Charnetzki, Nawrochik, Syrnikov, Lebedev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolpakova, N.N., Charnetzki, P., Nawrochik, W. et al. Dielectric relaxation and ferroelectricity in Cd2Nb2O7 pyrochlore. J. Exp. Theor. Phys. 94, 395–402 (2002). https://doi.org/10.1134/1.1458490

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458490

Keywords

Navigation