Skip to main content
Log in

A molecular dynamics study of the microstructure of the liquid-gas interphase surface

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Numerical experiments showed that the number-of-bonds distribution of particles that form a fairly large molten argon-like cluster was bimodal. This result was interpreted as a consequence of the formation of two “phases, ” namely, particles inside the cluster and a monolayer of particles lying above the others. Particle chains were shown to be formed near the surface of the cluster. Splitting off of separate particles from them was the most probable mechanism of vaporization. Model concepts that described the dependences observed in numerical experiments were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Gibbs, in The Collected Works of J. Willard Gibbs (Yale Univ. Press, New Haven, 1948; Nauka, Moscow, 1982), Vols. 1, 2.

    Google Scholar 

  2. J. D. van der Waals, Lehrbuch der Thermostatik, Ed. by P. A. Kohnstamm (J. A. Barth, Leipzig, 1927; ONTI, Moscow, 1936), Parts I, II.

    Google Scholar 

  3. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ. Press, Oxford, 1982; Mir, Moscow, 1986).

    Google Scholar 

  4. X. C. Zeng and D. W. Oxtoby, J. Chem. Phys. 94, 4472 (1991).

    Article  ADS  Google Scholar 

  5. V. Talanquer and D. W. Oxtoby, J. Phys. Chem. 99, 2865 (1995).

    Article  Google Scholar 

  6. T. V. Bykov and X. C. Zeng, J. Chem. Phys. 111, 3705 (1999); 111, 10 602 (1999).

    ADS  Google Scholar 

  7. M. P. A. Fisher and M. Wortis, Phys. Rev. B 29, 6252 (1984).

    Article  ADS  Google Scholar 

  8. A. E. van Giessen, E. M. Blokhuis, and D. J. Bukman, J. Chem. Phys. 108, 1148 (1998).

    ADS  Google Scholar 

  9. S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii, and S. P. Malyshenko, J. Chem. Phys. 110, 8722 (1999).

    Article  ADS  Google Scholar 

  10. A. ten Bosch and D. I. Zhukhovitski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), in Proceedings of the First International Conference on Computational Nanoscience, Hilton, Head Island, South Carolina, USA, 2001, p. 141.

  11. Ya. I. Frenkel’, Kinetic Theory of Liquids: Collection of Selected Works (Akad. Nauk SSSR, Moscow, 1959).

    Google Scholar 

  12. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

    Article  ADS  Google Scholar 

  13. M.-D. Lacasse, G. S. Grest, and A. J. Levine, Phys. Rev. Lett. 80, 309 (1998).

    Article  ADS  Google Scholar 

  14. S. W. Sides, G. S. Grest, and M.-D. Lacasse, Phys. Rev. E 60, 6708 (1999).

    Article  ADS  Google Scholar 

  15. M. J. P. Nijmeijer, A. F. Bakker, C. Bruin, and J. H. Sikkenk, J. Chem. Phys. 89, 3789 (1988).

    Article  ADS  Google Scholar 

  16. M. J. Haye and C. Bruin, J. Chem. Phys. 100, 556 (1994).

    Article  ADS  Google Scholar 

  17. M. Mecke, J. Winkelmann, and J. Fischer, J. Chem. Phys. 107, 9264 (1997).

    Article  ADS  Google Scholar 

  18. J. K. Lee, J. A. Barker, and G. M. Pound, J. Chem. Phys. 60, 1976 (1974).

    Google Scholar 

  19. G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson, J. Chem. Soc., Faraday Trans. 2 8, 1133 (1977).

    Google Scholar 

  20. D. I. Zhukhovitskii, Zh. Éksp. Teor. Fiz. 113, 181 (1998) [JETP 86, 101 (1998)].

    Google Scholar 

  21. D. I. Zhukhovitskii, Zh. Éksp. Teor. Fiz. 109, 839 (1996) [JETP 82, 451 (1996)].

    Google Scholar 

  22. D. I. Zhukhovitskii, J. Chem. Phys. 103, 9401 (1995).

    Article  ADS  Google Scholar 

  23. F. H. Stillinger, Jr., J. Chem. Phys. 38, 1486 (1963).

    Article  Google Scholar 

  24. D. I. Zhukhovitskii, Zh. Fiz. Khim. 75, 1157 (2001).

    Google Scholar 

  25. D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).

    Article  ADS  Google Scholar 

  26. D. I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).

    Article  ADS  Google Scholar 

  27. V. V. Zhakhovskii and S. I. Anisimov, Zh. Éksp. Teor. Fiz. 111, 1328 (1997) [JETP 84, 734 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 2, 2002, pp. 396–405.

Original Russian Text Copyright © 2002 by Zhukhovitski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukhovitskii, D.I. A molecular dynamics study of the microstructure of the liquid-gas interphase surface. J. Exp. Theor. Phys. 94, 336–344 (2002). https://doi.org/10.1134/1.1458483

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1458483

Keywords

Navigation