Advertisement

Optics and Spectroscopy

, Volume 92, Issue 2, pp 236–238 | Cite as

Effect of the field of a nonlinear electromagnetic wave on the shape of a soliton in a semiconductor superlattice

  • S. V. Kryuchkov
  • É. G. Fedorov
Physical and Quantum Optics
  • 33 Downloads

Abstract

The effect of the electric component of the field of a high-frequency (HF) nonlinear electromagnetic (EM) wave on the propagation of a solitary EM wave (soliton) in a quantum semiconductor superlattice is studied. It is noted that in the collisionless approximation, the solution of the modified sine-Gordon equation corresponding to the amplification of an EM pulse that, with allowance made for interminiband electron transitions, transforms into a dissipative soliton is possible. The effect of electron collisions with irregularities of the crystal lattice on the soliton dynamics under the action of the field of a HF nonlinear wave is considered. The condition for an increase in the traveling time of the solitary wave is found.

Keywords

Soliton Solitary Wave Dissipative Soliton Soliton Dynamic Electron Free Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Pulses (Nauka, Moscow, 1988).Google Scholar
  2. 2.
    É. M. Belenov, L. A. Grechko, and A. P. Kanavin, Pis’ma Zh. Éksp. Teor. Fiz. 58, 331 (1993) [JETP Lett. 58, 333 (1993)].ADSGoogle Scholar
  3. 3.
    É. M. Épshtein, Fiz. Tverd. Tela (Leningrad) 19, 3456 (1977) [Sov. Phys. Solid State 19, 2020 (1977)].Google Scholar
  4. 4.
    A. P. Tetervov, Ukr. Fiz. Zh. 23, 1182 (1978).ADSGoogle Scholar
  5. 5.
    É. M. Épshtein, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24, 1293 (1981).Google Scholar
  6. 6.
    F. G. Bass, S. V. Kryuchkov, and A. I. Shapovalov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29, 19 (1995) [Semiconductors 29, 9 (1995)].Google Scholar
  7. 7.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989).Google Scholar
  8. 8.
    É. M. Belenov, P. G. Kryukov, A. V. Nazarkin, et al., Pis’ma Zh. Éksp. Teor. Fiz. 47, 442 (1988) [JETP Lett. 47, 523 (1988)].ADSGoogle Scholar
  9. 9.
    É. M. Belenov and A. V. Nazarkin, Pis’ma Zh. Éksp. Teor. Fiz. 51, 252 (1990) [JETP Lett. 51, 288 (1990)].ADSGoogle Scholar
  10. 10.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  11. 11.
    S. V. Sazonov, Pis’ma Zh. Éksp. Teor. Fiz. 53(8), 400 (1991) [JETP Lett. 53, 420 (1991)].ADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
  • É. G. Fedorov
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations