Skip to main content
Log in

The generation of fast particles in plasmas created by laser pulses with different wavelengths

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

By means of spatially resolved high-resolution X-ray spectroscopy, we have investigated the generation of fast ions at various laser installations with different flux densities and laser wavelengths. It is demonstrated that the fast ion generation in laser-produced plasma can be achieved for a very low level of the averaged laser intensity on the target. The time-of-flight mass spectrometry ion diagnostics and X-ray spectrographs give very close results for the energy distribution of the thermal ion component. For higher energies, however, we found significant differences: the spatially resolved high-resolution spectrographs expose the presence of suprathermal ions, while the time-of-flight method does not. Suprathermal ion energies E ion plotted as a function of the qλ2 parameter show a large scatter far above the experimental errors. The cause of these large scatters is attributed to a strong nonuniformity of the laser intensity distribution in the focal spot. The analysis by means of hydrodynamics and spectral simulations show that the X-ray emission spectrum is a complex convolution from different parts of the plasma with strongly different electron density and temperature. It is shown that the highly resolved Li-like satellite spectrum near Heαcontains significant distortions even for very low hot electron fractions. Non-Maxwellian spectroscopy allows determination of both the hot electron fraction and the bulk electron temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHELIX, Petawatt High-Energy Laser for Heavy-Ion Experiments, GSI-98-10, Report (1998).

  2. F. B. Rosmej, U. N. Funk, M. Geißel, et al., J. Quant. Spectrosc. Radiat. Transf. 65, 477 (2000).

    Article  Google Scholar 

  3. J. Lindl, Phys. Plasmas 2, 3934 (1995).

    Article  ADS  Google Scholar 

  4. S. J. Gitomer, R. D. Jones, F. Begay, et al., Phys. Fluids 29, 2679 (1986).

    Article  ADS  Google Scholar 

  5. Laser Part. Beams 24(3) (1996).

    Google Scholar 

  6. V. A. Boiko, O. N. Krokhin, S. A. Pikuz, et al., Fiz. Plazmy 1, 309 (1975) [Sov. J. Plasma Phys. 1, 165 (1975)].

    Google Scholar 

  7. N. G. Basov, S. V. Bobashev, K. Gotz, et al., Pis’ma Zh. Éksp. Teor. Fiz. 36, 229 (1982) [JETP Lett. 36, 281 (1982)].

    Google Scholar 

  8. F. B. Rosmej, D. H. H. Hoffmann, W. Süß, et al., Pis’ma Zh. Éksp. Teor. Fiz. 70, 262 (1999) [JETP Lett. 70, 270 (1999)].

    Google Scholar 

  9. S. Dobosz, M. Schmidt, M. Perdrix, et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 454 (1998) [JETP Lett. 68, 485 (1998)].

    Google Scholar 

  10. A. G. Zhidkov, A. Sasaki, T. Tajima, et al., Phys. Rev. E 60, 3273 (1999).

    Article  ADS  Google Scholar 

  11. S. Bollanti, P. Di Lazarro, F. Flora, et al., Phys. Scr. 51, 326 (1995).

    ADS  Google Scholar 

  12. V. Yu. Baranov, K. N. Makarov, V. C. Roerich, et al., Laser Part. Beams 14, 347 (1996).

    Google Scholar 

  13. I. Yu. Skobelev, A. Ya. Faenov, B. A. Bryunetkin, et al., Zh. Éksp. Teor. Fiz. 108, 1263 (1995) [JETP 81, 692 (1995)].

    Google Scholar 

  14. B. K. F. Young, A. L. Osterheld, D. F. Price, et al., Rev. Sci. Instrum. 69, 4049 (1998).

    Article  ADS  Google Scholar 

  15. P. Wägli and T. P. Donaldson, Phys. Rev. Lett. 40, 875 (1978).

    Article  ADS  Google Scholar 

  16. M. Schnürer, M. P. Kalashnikov, P. Nickles, et al., Phys. Plasmas 2, 3106 (1995).

    ADS  Google Scholar 

  17. P. Wägli, T. P. Donaldson, and P. Lädrach, Appl. Phys. Lett. 32, 638 (1978).

    ADS  Google Scholar 

  18. B. C. Boland, F. E. Irons, and R. W. P. McWhirter, J. Phys. B 1, 1180 (1968).

    Article  ADS  Google Scholar 

  19. C. Fauquignon and F. Floux, Phys. Fluids 13, 386 (1970).

    Article  Google Scholar 

  20. M. Waki, T. Yamanaka, H. Kang, et al., Jpn. J. Appl. Phys. 11, 420 (1972).

    Article  Google Scholar 

  21. Los Alamos Sci. Lab. Rep., No. LA-UR 76-2242 (1976).

  22. K. Dick and H. Pepin, Opt. Commun. 13, 289 (1975).

    Article  ADS  Google Scholar 

  23. C. Yamanaka, T. Yamanaka, T. Sasaki, and J. Mizui, Phys. Rev. Lett. 32, 1038 (1974).

    Article  ADS  Google Scholar 

  24. E. Fabre, C. Garban, C. Popovics, et al., in Proceedings of the Conference on Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1975), Vol. II, p. 597.

    Google Scholar 

  25. H. Pepin, B. Grek, F. Rhealt, and D. Nagel, J. Appl. Phys. 48, 3312 (1977).

    ADS  Google Scholar 

  26. A. E. Stepanov, A. N. Starostin, V. C. Roerich, et al., J. Quant. Spectrosc. Radiat. Transf. 58, 937 (1997).

    Article  Google Scholar 

  27. G. B. Rybicki and D. G. Hummer, Astrophys. J. 274, 380 (1983).

    Article  ADS  Google Scholar 

  28. F. B. Rosmej, J. Phys. B 30, L819 (1997).

    Article  ADS  Google Scholar 

  29. F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, et al., Pis’ma Zh. Éksp. Teor. Fiz. 65, 679 (1997) [JETP Lett. 65, 708 (1997)].

    Google Scholar 

  30. F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, et al., J. Quant. Spectrosc. Radiat. Transf. 58, 859 (1997).

    Article  Google Scholar 

  31. F. B. Rosmej, D. Reiter, V. S. Lisitsa, et al., Plasma Phys. Controlled Fusion 41, 191 (1999).

    Article  ADS  Google Scholar 

  32. D. W. Forslund and J. U. Blackbill, Phys. Rev. Lett. 48, 1614 (1982).

    Article  ADS  Google Scholar 

  33. N. E. Andreev, Yu. A. Zakharenkov, N. N. Zorev, et al., Zh. Éksp. Teor. Fiz. 70, 547 (1976) [Sov. Phys. JETP 43, 283 (1976)].

    ADS  Google Scholar 

  34. A. S. Shlyaptseva, A. M. Urnov, and A. V. Vinogradov, Preprint No. 193, FIAN (Lebedev Institute of Physics, Academy of Sciences of USSR, Moscow, 1981).

  35. M. K. Inal and J. Dubau, J. Phys. B 22, 3329 (1989).

    Article  ADS  Google Scholar 

  36. F. B. Rosmej, J. Quant. Spectrosc. Radiat. Transf. 51, 319 (1994).

    Article  ADS  Google Scholar 

  37. F. B. Rosmej and O. N. Rosmej, AIP Conf. Proc. 299, 560 (1994).

    Google Scholar 

  38. F. B. Rosmej, J. Phys. B 28, L747 (1995).

    Article  ADS  Google Scholar 

  39. J. Abdallah, Jr., A. Ya. Faenov, D. Hammer, et al., Phys. Scr. 53, 705 (1996).

    ADS  Google Scholar 

  40. J. P. Matte, J. C. Kieffer, S. Ethier, and M. Chaker, Phys. Rev. Lett. 53, 1461 (1994).

    Google Scholar 

  41. A. H. Gabriel, Mon. Not. R. Astron. Soc. 160, 99 (1972).

    ADS  Google Scholar 

  42. T. P. Donaldson and I. J. Spalding, Phys. Rev. Lett. 36, 467 1976).

    ADS  Google Scholar 

  43. P. Gibbon and E. Forster, Plasma Phys. Controlled Fusion 38, 759 (1996).

    Article  ADS  Google Scholar 

  44. A. G. Zhidkov, A. Sasaki, T. Tajima, et al., Phys. Rev. E 60, 3273 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 121, No. 1, 2002, pp. 73–87.

Original English Text Copyright © 2002 by Rosmej, Hoffmann, Süß, Stepanov, Satov, Smakovskii, Roerich, Khomenko, Makarov, Starostin, Faenov, Skobelev, Magunov, Geißel, Pirzadeh, Seelig, Pikuz, Bock, Letardi, Flora, Bollanti, Di Lazzaro, Reale, Scafati, Tomassetti, Auguste, d’Oliveira, Hulin, Monot, Sharkov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosmej, F.B., Hoffmann, D.H.H., Süß, W. et al. The generation of fast particles in plasmas created by laser pulses with different wavelengths. J. Exp. Theor. Phys. 94, 60–72 (2002). https://doi.org/10.1134/1.1448609

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1448609

Keywords

Navigation