Skip to main content
Log in

Gluon cluster solution in effective Yang-Mills theory

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A finite-energy classical solution in effective Yang-Mills theory specified by a nonstandard Lagrangian is obtained. The effect of vacuum polarization on the formation of gluon clusters is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).

    Article  ADS  Google Scholar 

  2. A. N. Polyakov, Pis’ma Zh. Éksp. Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].

    Google Scholar 

  3. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and Yu. S. Tyupkin, Phys. Lett. B 59B, 85 (1975).

    ADS  MathSciNet  Google Scholar 

  4. G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

    Article  MathSciNet  Google Scholar 

  5. V. A. Rubakov, Pis’ma Zh. Éksp. Teor. Fiz. 33, 658 (1981) [JETP Lett. 33, 644 (1981)].

    Google Scholar 

  6. C. Callan, Phys. Rev. D 25, 2141 (1982); 26, 2058 (1982).

    Article  ADS  Google Scholar 

  7. S. Deser, Phys. Lett. B 64B, 463 (1976).

    ADS  Google Scholar 

  8. H. Pagels, Phys. Lett. B 68B, 466 (1977).

    ADS  MathSciNet  Google Scholar 

  9. S. Coleman, Commun. Math. Phys. 55, 113 (1977).

    Article  MATH  Google Scholar 

  10. F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212 (1984).

    Article  ADS  Google Scholar 

  11. L. G. Yaffe, Phys. Rev. D 40, 3463 (1989).

    Article  ADS  Google Scholar 

  12. B. Julia and A. Zee, Phys. Rev. D 11, 2227 (1975).

    Article  ADS  Google Scholar 

  13. R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13, 2739 (1976); Nucl. Phys. B 115, 1, 36 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  14. T. D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Schwinger, Phys. Rev. 82, 664 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  16. F. A. Lunev, Phys. Lett. B 311, 273 (1993).

    ADS  MathSciNet  Google Scholar 

  17. F. A. Lunev and O. V. Pavlovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Teor. Mat. Fiz. 117, 163 (1998).

    Google Scholar 

  18. A. I. Alekseev, B. A. Arbuzov, and V. A. Baikov, Teor. Mat. Fiz. 52, 187 (1982).

    Google Scholar 

  19. A. I. Alekseev and B. A. Arbuzov, Teor. Mat. Fiz. 59, 80 (1984).

    MathSciNet  Google Scholar 

  20. A. I. Alekseev and B. A. Arbuzov, Phys. Lett. B 242, 103 (1990).

    ADS  Google Scholar 

  21. A. I. Alekseev and B. A. Arbuzov, Teor. Mat. Fiz. 65, 202 (1985).

    MathSciNet  Google Scholar 

  22. A. I. Alekseev, A. S. Vshivtsev, and A. V. Tatarintsev, Teor. Mat. Fiz. 77, 266 (1988).

    Google Scholar 

  23. A. I. Alekseev, A. S. Vshivtsev, and V. K. Perez-Fernandez, Izv. Vyssh. Uchebn. Zaved., Fiz. 33 (4), 82 (1990).

    Google Scholar 

  24. A. G. Lavkin, Yad. Fiz. 55, 1146 (1992) [Sov. J. Nucl. Phys. 55, 644 (1992)].

    MathSciNet  Google Scholar 

  25. M. Baker and F. Zachariasen, Phys. Lett. B 108B, 206 (1982).

    ADS  Google Scholar 

  26. M. Baker, J. S. Ball, and F. Zachariasen, Nucl. Phys. B 209, 445 (1983).

    ADS  Google Scholar 

  27. S. Baskal and T. Dereli, J. Phys. G 19, 477 (1993).

    Article  ADS  Google Scholar 

  28. F. A. Lunev, Phys. Lett. B 295, 99 (1992); Teor. Mat. Fiz. 94, 66 (1993).

    ADS  MathSciNet  Google Scholar 

  29. O. V. Pavlovsky, in Proceedings of the 10th International Seminar “Quarks ’98,” Suzdal, 1998 (INR RAS, Moscow, 1999).

    Google Scholar 

  30. E. H. Simmons, Phys. Lett. B 226, 132 (1989).

    ADS  Google Scholar 

  31. E. H. Simmons, Phys. Lett. B 246, 471 (1990).

    ADS  Google Scholar 

  32. K. Arthur, G. M. O’Brien, and D. H. Tchrakian, J. Math. Phys. 38, 4403 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Fujii, Lett. Math. Phys. 12, 363 (1986).

    MATH  MathSciNet  Google Scholar 

  34. T. T. Wu and C. N. Yang, in Properties of Matter under Unusual Conditions, Ed. by H. Mark and S. Fernback (Interscience, New York, 1969).

    Google Scholar 

  35. B. P. Demidovich, Lectures on Stability Theory (Nauka, Moscow, 1967).

    Google Scholar 

  36. D. Gal’tsov and R. Kerner, Phys. Rev. Lett. 84, 5955 (2000).

    ADS  Google Scholar 

  37. D. Brecher and M. J. Perry, Nucl. Phys. B 527, 121 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  38. A. A. Tseytlin, Nucl. Phys. B 501, 41 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. G. Gibbons, Nucl. Phys. B 514, 603 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. J. P. Gauntlett, J. Gomis, and P. K. Townsend, JHEP 01, 003 (1998).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 64, No. 11, 2001, pp. 2105–2112.

Original Russian Text Copyright © 2001 by Pavlovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlovskii, O.V. Gluon cluster solution in effective Yang-Mills theory. Phys. Atom. Nuclei 64, 2020–2026 (2001). https://doi.org/10.1134/1.1423751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1423751

Keywords

Navigation