Skip to main content
Log in

Strong decays of a scalar glueball in a scale-invariant chiral quark model

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An effective meson Lagrangian including a scalar glueball is constructed on the basis of U(3)×U(3) chiral symmetry. The glueball is introduced in the meson Lagrangian by using the principle of scale invariance of an effective Lagrangian and the dilaton model. The singlet-octet mixing of scalar-meson states is described by means of the ’t Hooft interaction. The contribution of scalar and pseudoscalar anomalies to the breakdown of scale invariance is taken into account. The mixing of quarkonia with the glueball is described. The mass spectrum of scalar mesons, together with the glueball, and also their strong decay widths are calculated. From a comparison of the results with experimental data, it follows that f 0(1500) is rather a glueball, whereas f 0(1710) is a quarkonium. This is in accord with the results obtained in our previous study, where radially excited scalar-meson states were described. It is shown that the ρ meson plays an important role in the description of glueball decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sexton, A. Vaccarino, and D. Weingarten, Phys. Rev. Lett. 75, 4563 (1995).

    Article  ADS  Google Scholar 

  2. W. Lee and D. Weingarten, Phys. Rev. D 59, 094508 (1999).

  3. A. Vaccarino and D. Weingarten, hep-lat/9910007.

  4. C. Amsler et al., Phys. Lett. B 353, 425 (1995); C. Amsler and F. Close, Phys. Lett. B 353, 385 (1995).

    ADS  Google Scholar 

  5. S. Narison, Nucl. Phys. B 509, 312 (1998).

    Article  ADS  Google Scholar 

  6. V. V. Anisovich, D. V. Bugg, and A. V. Sarantsev, Phys. Rev. D 58, 111503 (1998).

    Google Scholar 

  7. A. Palano, Nucl. Phys. B (Proc. Suppl.) 39, 287 (1995).

    Article  ADS  Google Scholar 

  8. N. A. Törnqvist and M. Roos, Phys. Rev. Lett. 76, 1575 (1996).

    ADS  Google Scholar 

  9. Eef van Beveren and G. Rupp, hep-ph/9806246.

  10. L. S. Celenza, B. Huang, H. Wang, and C. M. Shakin, Preprint No. BCCNT:99/111/283, Brooklin Coll. (New York, 1999).

  11. L. S. Celenza, Shun-fu Gao, Bo Huangsheng Wang, and C. M. Shakin, Phys. Rev. C 61, 035201 (2000).

  12. M. K. Volkov and V. L. Yudichev, Int. J. Mod. Phys. A 14, 4621 (1999); Fiz. Élem. Chastits At. Yadra 31, 576 (2000) [Phys. Part. Nucl. 31, 282 (2000)]; Yad. Fiz. 63, 1924 (2000) [Phys. At. Nucl. 63, 1835 (2000)].

    ADS  Google Scholar 

  13. M. K. Volkov, Ann. Phys. (N.Y.) 157, 282 (1984); Fiz. Élem. Chastits At. Yadra 17, 433 (1986) [Sov. J. Part. Nucl. 17, 186 (1986)]; D. Ebert and H. Reinhardt, Nucl. Phys. B 271, 188 (1986); M. K. Volkov, Fiz. Élem. Chastits At. Yadra 24, 81 (1993) [Phys. Part. Nucl. 24, 35 (1993)].

    Article  Google Scholar 

  14. M. K. Volkov and D. Ebert, Yad. Fiz. 36, 1265 (1982) [Sov. J. Nucl. Phys. 36, 736 (1982)]; Z. Phys. C 16, 205 (1983).

    Google Scholar 

  15. M. K. Volkov and C. Weiss, Phys. Rev. D 56, 221 (1997).

    Article  ADS  Google Scholar 

  16. M. K. Volkov, Yad. Fiz. 60, 2094 (1997) [Phys. At. Nucl. 60, 1920 (1997)].

    Google Scholar 

  17. G. Ripka and M. Jaminon, Ann. Phys. (N.Y.) 218, 51 (1992); M. Jaminon and G. Rapha, Nucl. Phys. A 564, 551 (1993).

    Article  Google Scholar 

  18. J. Cugnon, M. Jaminon, and B. van den Bosche, Nucl. Phys. A 598, 515 (1996); M. Jaminon and B. van den Bosche, Nucl. Phys. A 619, 285 (1997).

    ADS  Google Scholar 

  19. K. Kusaka, M. K. Volkov, and W. Weise, Phys. Lett. B 302, 145 (1993).

    ADS  Google Scholar 

  20. A. A. Andrianov, V. A. Andrianov, V. Yu. Novozhilov, and Yu. V. Novozhilov, Pis’ma Zh. Éksp. Teor. Fiz. 43, 557 (1986) [JETP Lett. 43, 719 (1986)]; A. A. Andrianov, V. A. Andrianov, D. Ebert, and T. Feldmann, Int. J. Mod. Phys. A 12, 5589 (1997); A. A. Andrianov and V. A. Andrianov, Z. Phys. C 55, 435 (1992); A. A. Andrianov, V. A. Andrianov, Yu. V. Novozhilov, and V. Yu. Novozhilov, Phys. Lett. B 186, 401 (1987).

    Google Scholar 

  21. J. Ellis and J. Lánik, Phys. Lett. B 150B, 289 (1985); Phys. Lett. B 175, 83 (1986); J. Lánik, Acta Phys. Slov. 35, 343 (1985); B. A. Campbell, J. Ellis, and K. A. Olive, Nucl. Phys. B 345, 57 (1990).

    ADS  Google Scholar 

  22. C. Rosenzweig, J. Schechter, and G. Trahern, Phys. Rev. D 21, 3388 (1980).

    Article  ADS  Google Scholar 

  23. M. K. Volkov, Fiz. Élem. Chastits At. Yadra 13, 1070 (1982) [Sov. J. Part. Nucl. 13, 446 (1982)].

    Google Scholar 

  24. M. K. Volkov, M. Nagy, and V. L. Yudichev, Nuovo Cimento A 112, 225 (1999).

    ADS  Google Scholar 

  25. A. E. Dorokhov and N. I. Kochelev, Z. Phys. C 37, 377 (1988); Yad. Fiz. 52, 214 (1990) [Sov. J. Nucl. Phys. 52, 135 (1990)]; Fiz. Élem. Chastits At. Yadra 23, 1192 (1992) [Sov. J. Part. Nucl. 23, 522 (1992)].

    Article  Google Scholar 

  26. H. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).

    Article  ADS  Google Scholar 

  27. S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  28. D. J. Broadhurst et al., Phys. Lett. B 329, 103 (1994); B. V. Geshkenbein, Yad. Fiz. 58, 1873 (1995) [Phys. At. Nucl. 58, 1771 (1995)]; S. Narison, Phys. Lett. B 387, 162 (1996).

    ADS  Google Scholar 

  29. E. Byckling and K. Kajantie, Particle Kinematics (Wiley, London, 1973).

    Google Scholar 

  30. Particle Data Group (C. Caso et al.), Eur. Phys. J. C 3, 1 (1998).

    Google Scholar 

  31. R. Kumar, Phys. Rev. 185, 1865 (1969).

    ADS  Google Scholar 

  32. D. Ebert, M. Nagy, M. K. Volkov, and V. L. Yudichev, Eur. Phys. J. A 8, 567 (2000).

    Article  ADS  Google Scholar 

  33. M. A. Shifman, Phys. Rep. 209, 341 (1991).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 11, 2001, pp. 2091–2104.

Original English Text Copyright © 2001 by Volkov, Yudichev.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, M.K., Yudichev, V.L. Strong decays of a scalar glueball in a scale-invariant chiral quark model. Phys. Atom. Nuclei 64, 2006–2019 (2001). https://doi.org/10.1134/1.1423750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1423750

Keywords

Navigation