Skip to main content
Log in

Comparison of the k T-factorization approach and the QCD parton model for charm and beauty hadroproduction

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We compare numerical predictions of the conventional QCD parton model and of the k T-factorization approach (semihard theory) for heavy-quark production in high-energy hadron collisions. The total production cross sections and one-particle rapidity and p T distributions, as well as two-particle correlations, are considered. The distinction between the predictions of the two approaches is not very large, while the shapes of the distributions are slightly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B 303, 607 (1988).

    Article  ADS  Google Scholar 

  2. G. Altarelli et al., Nucl. Phys. B 308, 724 (1988).

    Article  ADS  Google Scholar 

  3. P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B 327, 49 (1989).

    Article  ADS  Google Scholar 

  4. W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith, Phys. Rev. D 40, 54 (1989).

    Article  ADS  Google Scholar 

  5. W. Beenakker, W. L. van Neerven, R. Meng, et al., Nucl. Phys. B 351, 507 (1991).

    Article  ADS  Google Scholar 

  6. M. N. Mangano, P. Nason, and G. Ridolfi, Nucl. Phys. B 373, 295 (1992).

    Article  ADS  Google Scholar 

  7. S. Frixione, M. N. Mangano, P. Nason, and G. Ridolfi, Preprint CERN-TH/97-16 (1997); hep-ph/9702287.

  8. Yu. M. Shabelski, Talk given at HERA Monte Carlo Workshop, DESY, Hamburg, 1998; hep-ph/9904492.

  9. S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B 242, 97 (1990); Nucl. Phys. B 366, 135 (1991).

    ADS  Google Scholar 

  10. J. C. Collins and R. K. Ellis, Nucl. Phys. B 360, 3 (1991).

    Article  ADS  Google Scholar 

  11. G. Marchesini and B. R. Webber, Nucl. Phys. B 386, 215 (1992).

    Article  ADS  Google Scholar 

  12. S. Catani and F. Hautmann, Phys. Lett. B 315, 475 (1993); Nucl. Phys. B 427, 475 (1994).

    Google Scholar 

  13. S. Camici and M. Ciafaloni, Nucl. Phys. B 467, 25 (1996); Phys. Lett. B 396, 406 (1997).

    Article  ADS  Google Scholar 

  14. L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983).

    Article  ADS  Google Scholar 

  15. E. M. Levin and M. G. Ryskin, Phys. Rep. 189, 267 (1990).

    Article  ADS  Google Scholar 

  16. E. M. Levin, M. G. Ryskin, Yu. M. Shabelski, and A. G. Shuvaev, Yad. Fiz. 53, 1059 (1991) [Sov. J. Nucl. Phys. 53, 657 (1991)].

    Google Scholar 

  17. E. M. Levin, M. G. Ryskin, Yu. M. Shabelski, and A. G. Shuvaev, Yad. Fiz. 54, 1420 (1991) [Sov. J. Nucl. Phys. 54, 867 (1991)].

    Google Scholar 

  18. M. G. Ryskin, Yu. M. Shabelski, and A. G. Shuvaev, Z. Phys. C 69, 269 (1996).

    Google Scholar 

  19. Yu. M. Shabelski and A. G. Shuvaev, Eur. Phys. J. C 6, 313 (1999).

    Article  ADS  Google Scholar 

  20. M. G. Ryskin, Yu. M. Shabelski, and A. G. Shuvaev, Yad. Fiz. 64, 123 (2001) [Phys. At. Nucl. 64, 120 (2001)]

    Google Scholar 

  21. M. Gluck, E. Reya, and A. Vogt, Z. Phys. C 67, 433 (1995).

    Google Scholar 

  22. M. Gluck, E. Reya, and A. Vogt, Eur. Phys. J. C 5, 461 (1998).

    ADS  Google Scholar 

  23. J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B 308, 833 (1988).

    Article  ADS  Google Scholar 

  24. S. Narison, Phys. Lett. B 341, 73 (1994); hep-ph/9503234.

    ADS  Google Scholar 

  25. P. Ball, M. Beneke, and V. M. Braun, Phys. Rev. D 52, 3929 (1995).

    Article  ADS  Google Scholar 

  26. J. Blümlein, Preprint 95-121, DESY (Hamburg, 1995).

  27. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Éksp. Teor. Fiz. 72, 377 (1977) [Sov. Phys. JETP 45, 199 (1977)].

    MathSciNet  Google Scholar 

  28. G. Marchesini and B. R. Webber, Nucl. Phys. B 310, 461 (1988).

    Article  ADS  Google Scholar 

  29. M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000).

    Article  ADS  Google Scholar 

  30. Yu. L. Dokshitzer, D. I. Dyakonov, and S. I. Troyan, Phys. Rep. 58, 270 (1980).

    Article  ADS  Google Scholar 

  31. S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D 28, 228 (1983).

    Article  ADS  Google Scholar 

  32. G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

    MATH  Google Scholar 

  33. J. Kwiechinski, Z. Phys. C 29, 561 (1985).

    Google Scholar 

  34. M. N. Mangano, P. Nason, and G. Ridolfi, Nucl. Phys. B 405, 507 (1993).

    ADS  Google Scholar 

  35. Liu Wenjie, O. P. Strogova, L. Cifarelli, and Yu. M. Shabelski, Yad. Fiz. 57, 900 (1994) [Phys. At. Nucl. 57, 844 (1994)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 11, 2001, pp. 2080–2090.

Original English Text Copyright © 2001 by Ryskin, Shabelski, Shuvaev.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryskin, M.G., Shabelski, Y.M. & Shuvaev, A.G. Comparison of the k T-factorization approach and the QCD parton model for charm and beauty hadroproduction. Phys. Atom. Nuclei 64, 1995–2005 (2001). https://doi.org/10.1134/1.1423749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1423749

Keywords

Navigation