Skip to main content
Log in

Antikaon production and medium effects in proton-nucleus reactions at subthreshold beam energies

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Inclusive K -meson production in proton-nucleus collisions in the subthreshold-energy regime is analyzed within an appropriate folding model for incoherent primary proton-nucleon and secondary pion-nucleon production processes, which takes properly into account the struck-target-nucleon momentum and removal-energy distribution (nucleon spectral function), novel elementary cross sections for proton-nucleon reaction channels close to threshold, as well as nuclear mean-field potential effects on the one-step and two-step antikaon-creation processes. A detailed comparison of the model calculations of the K differential cross sections for the reactions p+9Be and p+63Cu at subthreshold energies with the first experimental data obtained at the ITEP proton synchrotron is given. It displays both the relative role of the primary and secondary production channels at incident energies considered and the contributions to K production that come from the use of the single-particle part and high-momentum-energy part of the nucleon spectral function. It is found that the pion-nucleon production channel does not dominate in the subthreshold “hard” antikaon production in p 9Be and p 63Cu collisions and that the main contributions to the antikaon yields here come from the direct K -production mechanism. The influence of the nucleon, kaon, and antikaon mean-field potentials on the K yield is explored. It is shown that the effect of the nucleon mean field is of importance in explaining the considered experimental data on “hard” antikaon production, whereas the K + andK optical potentials play a minor role. The sensitivity of subthreshold “soft” antikaon production in p 9Be reactions to the nucleon, kaon, and antikaon mean fields is studied. It is demonstrated that, contrary to the case of “hard” antikaon production, the K potential has a very strong effect on the K yield, which is comparable with that from the nucleon effective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

    Article  Google Scholar 

  2. D. B. Kaplan and A. E. Nelson, Phys. Lett. B 175, 57 (1986).

    ADS  Google Scholar 

  3. G. E. Brown et al., Nucl. Phys. A 567, 937 (1994).

    ADS  Google Scholar 

  4. C. H. Lee et al., Nucl. Phys. A 585, 401 (1995).

    ADS  Google Scholar 

  5. G. E. Brown and M. Rho, Phys. Rep. 269, 333 (1996); C. H. Lee, Phys. Rep. 275, 255 (1996).

    Article  ADS  Google Scholar 

  6. G. Mao et al., nucl-th/9811021.

  7. A. Bhattacharyya et al., Phys. Lett. B 401, 213 (1997).

    ADS  Google Scholar 

  8. J. Schaffner-Bielich et al., Nucl. Phys. A 625, 325 (1997).

    ADS  Google Scholar 

  9. J. Schaffner and I. N. Mishustin, Phys. Rev. C 53, 1416 (1996).

    Article  ADS  Google Scholar 

  10. E. Friedman et al., Phys. Rev. C 60, 024314 (1999).

  11. M. Lutz et al., Nucl. Phys. A 574, 755 (1994).

    ADS  Google Scholar 

  12. M. C. Ruivo et al., Nucl. Phys. A 651, 59 (1999).

    ADS  Google Scholar 

  13. K. Tsushima et al., Phys. Lett. B 429, 239 (1998).

    ADS  Google Scholar 

  14. V. Koch, Phys. Lett. B 337, 7 (1994).

    ADS  Google Scholar 

  15. T. Waas et al., Phys. Lett. B 379, 34 (1996); 365, 12 (1996).

    ADS  Google Scholar 

  16. G. Q. Li et al., Phys. Lett. B 329, 149 (1994).

    ADS  Google Scholar 

  17. E. Friedman et al., Phys. Lett. B 308, 6 (1993); Nucl. Phys. A 579, 518 (1994).

    ADS  Google Scholar 

  18. E. Friedman, Nucl. Phys. A 639, 511c (1998).

    ADS  Google Scholar 

  19. T. Kishimoto, nucl-th/9910014.

  20. G. Q. Li et al., Nucl. Phys. A 625, 372 (1997).

    ADS  Google Scholar 

  21. E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998); A. Ramos and E. Oset, nucl-th/9906016.

    ADS  Google Scholar 

  22. J. Schaffner-Bielich et al., nucl-th/9907095.

  23. A. Sibirtsev and W. Cassing, Nucl. Phys. A 641, 476 (1998).

    ADS  Google Scholar 

  24. A. Sibirtsev and W. Cassing, nucl-th/9909024.

  25. A. Sibirtsev and W. Cassing, nucl-th/9909053.

  26. G. Q. Li et al., Phys. Rev. Lett. 74, 235 (1995).

    ADS  Google Scholar 

  27. G. Q. Li and C. M. Ko, Nucl. Phys. A 594, 460 (1995).

    ADS  Google Scholar 

  28. E. L. Bratkovskaya et al., Nucl. Phys. A 622, 593 (1997).

    ADS  Google Scholar 

  29. G. Song et al., Nucl. Phys. A 646, 481 (1999).

    ADS  Google Scholar 

  30. Bao-An Li and C. M. Ko, Phys. Rev. C 54, 3283 (1996).

    ADS  Google Scholar 

  31. Z. S. Wang et al., Nucl. Phys. A 628, 151 (1998).

    ADS  Google Scholar 

  32. Z. S. Wang et al., Eur. Phys. J. A 5, 275 (1999).

    ADS  Google Scholar 

  33. P. Crochet, Nucl. Phys. A 654, 765c (1999).

    Google Scholar 

  34. R. Barth et al., Phys. Rev. Lett. 78, 4007 (1997).

    Article  ADS  Google Scholar 

  35. P. Senger (for KaoS Collab.), Acta Phys. Pol. B 27, 2993 (1996).

    Google Scholar 

  36. E. Grosse, Nucl. Phys. A 654, 501c (1999).

    Google Scholar 

  37. F. Laue et al., Phys. Rev. Lett. 82, 1640 (1999).

    Article  ADS  Google Scholar 

  38. A. Schröter et al., Z. Phys. A 350, 101 (1994).

    Google Scholar 

  39. G. Q. Li et al., Phys. Rev. Lett. 79, 5214 (1997).

    ADS  Google Scholar 

  40. G. E. Brown et al., Nucl. Phys. A 639, 455c (1998).

    ADS  Google Scholar 

  41. G. Q. Li et al., Nucl. Phys. A 654, 523c (1999).

    Google Scholar 

  42. W. Cassing et al., Nucl. Phys. A 614, 415 (1997).

    ADS  Google Scholar 

  43. V. P. Koptev et al., Zh. Éksp. Teor. Fiz. 94 (11), 1 (1988) [Sov. Phys. JETP 67, 2177 (1988)].

    ADS  Google Scholar 

  44. A. Shor et al., Nucl. Phys. A 514, 717 (1990).

    ADS  Google Scholar 

  45. W. Cassing et al., Phys. Lett. B 238, 25 (1990).

    ADS  Google Scholar 

  46. A. Sibirtsev and M. Büscher, Z. Phys. A 347, 191 (1994).

    Google Scholar 

  47. W. Cassing et al., Z. Phys. A 349, 77 (1994).

    Article  Google Scholar 

  48. A. Sibirtsev, Phys. Lett. B 359, 29 (1995).

    ADS  Google Scholar 

  49. H. Müller and K. Sistemich, Z. Phys. A 344, 197 (1992).

    Google Scholar 

  50. M. Debowski et al., Z. Phys. A 356, 313 (1996).

    Google Scholar 

  51. A. Sibirtsev et al., Z. Phys. A 358, 357 (1997).

    Google Scholar 

  52. S. V. Efremov and E. Ya. Paryev, Eur. Phys. J. A 1, 99 (1998).

    Article  ADS  Google Scholar 

  53. E. Ya. Paryev, Eur. Phys. J. A 5, 307 (1999).

    ADS  Google Scholar 

  54. A. V. Akindinov et al., Heavy Ion Phys. 4, 325 (1996).

    Google Scholar 

  55. Yu. T. Kiselev et al., Preprint No. 56-96, ITÉF (Inst. of Theoretical and Experimental Physics, Moscow, 1996).

  56. D. Grzonka and K. Kilian, Nucl. Phys. A 639, 569c (1998).

    ADS  Google Scholar 

  57. A. Badala et al., Phys. Rev. Lett. 80, 4863 (1998).

    ADS  Google Scholar 

  58. Yu. T. Kiselev (for FHS Collab.), J. Phys. G 25, 381 (1999).

    ADS  Google Scholar 

  59. A. V. Akindinov et al., Preprint No. 37-99, ITÉF (Inst. of Theoretical and Experimental Physics, Moscow, 1999).

  60. A. V. Akindinov et al., Preprint No. 41-99, ITÉF (Inst. of Theoretical and Experimental Physics, Moscow, 1999).

  61. S. V. Efremov and E. Ya. Paryev, Z. Phys. A 348, 217 (1994).

    Article  Google Scholar 

  62. X. S. Fang et al., Phys. Rev. C 49, R608 (1994).

    Article  ADS  Google Scholar 

  63. G. Q. Li and C. M. Ko, Phys. Rev. C 54, 1897 (1996).

    ADS  Google Scholar 

  64. E. L. Bratkovskaya et al., Eur. Phys. J. A 4, 165 (1999).

    Article  ADS  Google Scholar 

  65. F. Balestra (DISTO Collab.), Phys. Lett. B 468, 7 (1999).

    ADS  Google Scholar 

  66. S. V. Efremov and E. Ya. Paryev, Yad. Fiz. 57, 563 (1994) [Phys. At. Nucl. 57, 532 (1994)].

    Google Scholar 

  67. W. Oelert, Nucl. Phys. A 639, 13c (1998).

    ADS  Google Scholar 

  68. C. Gobbi et al., Phys. Rev. C 50, 1594 (1994).

    Article  ADS  Google Scholar 

  69. A. Sibirtsev et al., Z. Phys. A 351, 333 (1995).

    Article  Google Scholar 

  70. E. Ya. Paryev, in Proceedings of the International Conference on Physics with GeV-Particle Beams, Jülich, Germany, 1994, Ed. by H. Machner and K. Sistemich (World Sci., Singapore, 1995), p. 483.

    Google Scholar 

  71. C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996).

    ADS  Google Scholar 

  72. E. Ya. Paryev, Eur. Phys. J. A 7, 127 (2000).

    Article  ADS  Google Scholar 

  73. O. Benhar, S. Fantoni, and G. I. Lykasov, Eur. Phys. J. A 5, 137 (1999).

    Article  ADS  Google Scholar 

  74. E. Moeller et al., Phys. Rev. C 28, 1246 (1983).

    Article  ADS  Google Scholar 

  75. J. Papp et al., Phys. Rev. Lett. 34, 601 (1975); 34, 991 (1975).

    ADS  Google Scholar 

  76. Yu. T. Kiselev and V. A. Sheinkman, private communication.

  77. S. V. Efremov and E. Ya. Paryev, Z. Phys. A 351, 447 (1995).

    Article  Google Scholar 

  78. A. Sibirtsev et al., Z. Phys. A 358, 101 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 11, 2001, pp. 2016–2032.

Original English Text Copyright © 2001 by Paryev.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paryev, E.Y. Antikaon production and medium effects in proton-nucleus reactions at subthreshold beam energies. Phys. Atom. Nuclei 64, 1931–1947 (2001). https://doi.org/10.1134/1.1423743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1423743

Keywords

Navigation