Skip to main content
Log in

Rehybridization of the atomic orbitals and the field electron emission from nanostructured carbon

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The field electron emission, structural features, and electronic properties of carbon films obtained by chemical vapor deposition were experimentally studied. It is shown that the field electron emission from the films composed of spatially oriented carbon nanotubes and platelike graphite nanocrystals is observed for the electric field strength lower by one to two orders of magnitude as compared to the values characteristic of the metal emitters. Experimental data reported for the first time are indicative of a local decrease in the electron work function in such carbon film materials as compared to that in graphite. A model of the emission center is proposed and a mechanism of the field electron emission from nanostructured carbon is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119(781), 173 (1928).

    ADS  Google Scholar 

  2. Non-Incandesced Cathodes, Ed. by M. I. Elinson (Sovetskoe Radio, Moscow, 1974).

    Google Scholar 

  3. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

    Article  ADS  Google Scholar 

  4. J. Robertson, Thin Solid Films 296, 61 (1997).

    Article  Google Scholar 

  5. R. J. Nemanich, P. K. Baumann, M. C. Banjamin, et al., Diamond Relat. Mater. 5, 790 (1996).

    Google Scholar 

  6. F. J. Himsel, J. A. Knapp, J. A. van Vechten, and D. E. Eastman, Phys. Rev. B 20, 624 (1979).

    ADS  Google Scholar 

  7. M. W. Geis, N. N. Efremov, J. D. Woodhouse, et al., IEEE Electron Device Lett. 12, 456 (1991).

    Article  ADS  Google Scholar 

  8. S. A. Kajihara, A. Antonelli, J. Bernholc, and R. Car, Phys. Rev. Lett. 66, 2010 (1991).

    Article  ADS  Google Scholar 

  9. M. W. Geis, N. N. Efremov, K. E. Krohn, et al., Nature 393, 431 (1998).

    Article  Google Scholar 

  10. W. Zhu, G. P. Kochanski, S. Jin, et al., Appl. Phys. Lett. 67, 1157 (1995).

    ADS  Google Scholar 

  11. J. W. Steeds, A. Gilmore, K. M. Bussman, et al., Diamond Relat. Mater. 8, 996 (1999).

    Google Scholar 

  12. A. T. Sowers, B. L. Ward, S. L. English, et al., Diamond Relat. Mater. 9, 1569 (2000).

    Google Scholar 

  13. W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, J. Appl. Phys. 78, 2707 (1995).

    ADS  Google Scholar 

  14. O. Gröning, O. M. Küttel, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol. B 17, 1970 (1999).

    Google Scholar 

  15. J. Ristein, Diamond Relat. Mater. 9, 1129 (2000).

    Google Scholar 

  16. V. Ralchenko, A. Karabutov, I. Vlasov, et al., Diamond Relat. Mater. 8, 1496 (1999).

    Google Scholar 

  17. A. N. Obraztsov, V. P. Volkov, and I. Yu. Pavlovskii, Pis’ma Zh. Éksp. Teor. Fiz. 68, 56 (1998) [JETP Lett. 68, 59 (1998)].

    Google Scholar 

  18. A. N. Obraztsov, I. Yu. Pavlovsky, and A. P. Volkov, J. Vac. Sci. Technol. B 17, 674 (1999).

    Article  Google Scholar 

  19. A. N. Obraztsov, A. P. Volkov, and I. Yu. Pavlovsky, Diamond Relat. Mater. 9, 1190 (2000).

    Google Scholar 

  20. I. Yu. Pavlovskii and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).

  21. V. D. Frolov, A. V. Karabutov, V. I. Konov, et al., J. Phys. D 32, 815 (1999).

    Article  ADS  Google Scholar 

  22. O. Gröning, O. M. Küttel, Ch. Emmeneger, et al., J. Vac. Sci. Technol. B 18, 665 (2000).

    Google Scholar 

  23. J. E. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, 1992).

    Google Scholar 

  24. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (Wiley, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  25. A. N. Obraztsov, A. P. Volkov, I. Yu. Pavlovskii, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 381 (1999) [JETP Lett. 69, 411 (1999)].

    Google Scholar 

  26. A. P. Volkov, A. N. Obraztsov, I. Yu. Pavlovskii, et al., Poverkhnost, Nos. 5–6, 161 (1999).

  27. J.-M. Bonard, T. Stockli, F. Maier, et al., Phys. Rev. Lett. 81, 1441 (1998).

    Article  ADS  Google Scholar 

  28. H.-J. Ssheibe, H. Banzhof, A. Luft, et al., Abstract No. 8B.4 of the International Conference DIAMOND’98, Greece, 1998.

  29. C. Lea, J. Phys. D 6, 1105 (1973).

    Article  ADS  Google Scholar 

  30. E. P. Sheshin, Ultramicroscopy 79, 101 (1999).

    Google Scholar 

  31. A. Y. Tcherepanov, A. G. Chakhovskoi, and V. B. Sharov, J. Vac. Sci. Technol. B 13, 482 (1995).

    Article  Google Scholar 

  32. A. L. Suvorov, E. P. Sheshin, V. V. Protasenko, et al., Vide, Couches Minces, No. 271, 326 (1994).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 4, 2001, pp. 970–978.

Original Russian Text Copyright © 2001 by Obraztsov, Volkov, Boronin, Koshcheev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obraztsov, A.N., Volkov, A.P., Boronin, A.I. et al. Rehybridization of the atomic orbitals and the field electron emission from nanostructured carbon. J. Exp. Theor. Phys. 93, 846–852 (2001). https://doi.org/10.1134/1.1420454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1420454

Keywords

Navigation