Skip to main content
Log in

Magnetoresistance of an asymmetric quantum-size structure in a parallel magnetic field: Field asymmetry independent of the current direction

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new phenomenon, viz., field-asymmetric transverse magnetoresistance of a doped asymmetric quantum-size structure discovered in a magnetic field parallel to the heteroboundary planes, is studied experimentally and theoretically. The magnetoresistance asymmetry relative to the field direction, which is independent of the direction of transport current, is observed when a lateral electric field is embedded in the structure with the help of alloyed metallic contacts. In the theoretical part of the paper, it is shown that the contribution to current, which is asymmetric in the magnetic field, can be consistently described in the framework of the theory of spontaneous current states and photovoltaic effect in systems without an inversion center; the reason behind the emergence of this current is associated with the asymmetry of the energy spectrum of charge carriers relative to the quasimomentum. It is shown that the change in the size and shape of Fermi contours in a magnetic field determines the magnitude of the strong negative magnetoresistance associated with the intersubband scattering under investigation and is found to be responsible for the emergence of a qualitatively new effect mentioned in the title of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    ADS  Google Scholar 

  3. G. S. Boebinger, H. W. Jang, L. N. Pfieffer, and K. W. West, Phys. Rev. Lett. 64, 1793 (1990).

    ADS  Google Scholar 

  4. A. G. Davies, C. H. W. Barnes, K. R. Zolleis, et al., Phys. Rev. B 54, R17331 (1996).

  5. I. S. Millard, N. K. Patel, M. Y. Simmons, et al., J. Phys.: Condens. Matter 8, L311 (1996).

    Article  ADS  Google Scholar 

  6. A. A. Gorbatsevich, V. V. Kapaev, and Yu. V. Kopaev, Pis’ma Zh. Éksp. Teor. Fiz. 57, 565 (1993) [JETP Lett. 57, 580 (1993)].

    Google Scholar 

  7. H. Sakaki, H. Ohno, S. Nishi, and J. Yoshino, Physica B (Amsterdam) 117–118, 703 (1983).

    Google Scholar 

  8. D. R. Ledley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Semicond. Sci. Technol. 5, 1081 (1990).

    ADS  Google Scholar 

  9. J. M. Heisz and E. Zaremba, Semicond. Sci. Technol. 8, 575 (1993).

    Article  ADS  Google Scholar 

  10. Y. Berk, A. Kamenev, A. Palevsky, et al., Phys. Rev. B 51, 2604 (1995).

    ADS  Google Scholar 

  11. J. M. Heisz and E. Zaremba, Phys. Rev. B 53, 13594 (1996).

    Google Scholar 

  12. T. Jungwirth, T. S. Lay, L. Smrcka, and M. Shayegan, Phys. Rev. B 56, 1029 (1997).

    Article  ADS  Google Scholar 

  13. D. R. Ledley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, in Proceedings of the 20th International Conference on Physics of Semiconductors, Ed. by Anastassakis and J. D. Jaonopopoulos (World Sci., Singapore, 1990), p. 1609.

    Google Scholar 

  14. A. A. Gorbatsevich, V. V. Kapaev, Yu. V. Kopaev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 380 (1998) [JETP Lett. 68, 404 (1998)].

    Google Scholar 

  15. A. A. Gorbatsevich and Yu. V. Kopaev, Ferroelectrics 161, 321 (1994).

    Google Scholar 

  16. Yu. A. Artamonov, A. A. Gorbatsevich, and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 101, 557 (1992) [Sov. Phys. JETP 74, 296 (1992)].

    Google Scholar 

  17. A. Usher, R. J. Nicholas, J. J. Harris, and C. J. Foxon, Phys. Rev. B 41, 1129 (1990).

    Article  ADS  Google Scholar 

  18. I. V. Kukushkin, Doctoral (Phys.-Math.) Dissertation (Chernogolovka, 1990), p. 142.

  19. B. L. Altshuler and A. G. Aronov, Electron-Electron Interactions in Disordered Systems, Ed. by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985).

    Google Scholar 

  20. S. Mori and T. Ando, J. Phys. Soc. Jpn. 48, 865 (1980).

    Google Scholar 

  21. P. Streda, P. Vasek, and M. Curk, Phys. Rev. B 51, 11144 (1995).

  22. J. J. Harris, D. E. Lacklisson, C. T. Foxon, et al., Semicond. Sci. Technol. 2, 783 (1987).

    Article  ADS  Google Scholar 

  23. A. A. Gorbatsevich, V. V. Kapaev, and Yu. V. Kopaev, Ferroelectrics 161, 303 (1994).

    Google Scholar 

  24. V. M. Dubovik and L. A. Tosunyan, Fiz. Elem. Chastits At. Yadra 14, 1193 (1983) [Sov. J. Part. Nucl. 14, 504 (1983)].

    Google Scholar 

  25. A. A. Gorbatsevich, Zh. Éksp. Teor. Fiz. 95, 1467 (1989) [Sov. Phys. JETP 68, 847 (1989)].

    Google Scholar 

  26. V. I. Belinicher and B. I. Sturman, Usp. Fiz. Nauk 130, 415 (1980) [Sov. Phys. Usp. 23, 199 (1980)].

    Google Scholar 

  27. O. V. Kibis, Zh. Éksp. Teor. Fiz. 115, 959 (1999) [JETP 88, 527 (1999)].

    Google Scholar 

  28. H. Tang and P. N. Butcher, J. Phys. C 21, 3313 (1988).

    ADS  Google Scholar 

  29. H. Tang and P. N. Butcher, J. Phys. C 21, 3959 (1988).

    ADS  Google Scholar 

  30. R. A. Webb, S. Washburn, C. Umbach, and R. A. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).

    ADS  Google Scholar 

  31. M. L. Leadbeater, C. L. Foden, J. H. Burroughes, et al., Phys. Rev. B 52, R8629 (1995).

  32. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986).

    ADS  Google Scholar 

  33. M. Ma and P. A. Lee, Phys. Rev. B 35, 1448 (1987).

    ADS  Google Scholar 

  34. J. E. Muller, Phys. Rev. Lett. 68, 385 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 4, 2001, pp. 954–969.

Original Russian Text Copyright © 2001 by Gorbatsevich, Kapaev, Kopaev, Kucherenko, Omel’yanovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Tsebro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbatsevich, A.A., Kapaev, V.V., Kopaev, Y.V. et al. Magnetoresistance of an asymmetric quantum-size structure in a parallel magnetic field: Field asymmetry independent of the current direction. J. Exp. Theor. Phys. 93, 833–845 (2001). https://doi.org/10.1134/1.1420453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1420453

Keywords

Navigation