Skip to main content
Log in

Collective effects in doped nematic liquid crystals

  • Fluids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We studied the collective elastic interaction in a system of many macroparticles embedded in a nematic liquid crystal. A theoretical approach to the interaction of macroparticles via deformation of the director field [1] is developed. It is found that the director field distortion induced by many particles leads to the screening of the elastic pair interaction potential. This screening strongly depends on the shape of the embedded particles: it exists for anisotropic particles and is absent for spherical ones. Our results are valid for the homeotropic and the planar anchoring on the particle surface and for different Frank constants. We apply our results to cylindrical particles in a nematic liquid crystal. In a system of magnetic cylindrical grains suspended in a nematic liquid crystal, the external magnetic field perpendicular to the grain orientation results in inclining the grains to the director and induces an elastic Yukawa-law attraction between the grains. The appearance of this elastic attraction can explain the cellular texture in magnetically doped liquid crystals in the presence of the magnetic field [2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Lev and P. M. Tomchuk, Phys. Rev. E 59, 591 (1999).

    Article  ADS  Google Scholar 

  2. S. H. Chen and N. M. Amer, Phys. Rev. Lett. 51, 2298 (1983).

    ADS  Google Scholar 

  3. D. A. Soville, W. B. Russel, and W. R. Schowaiter, Colloidal Dispersions (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  4. A. P. Ruhwandl and E. M. Zukoski, Adv. Colloid Interface Sci. 30, 153 (1989).

    Google Scholar 

  5. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Science 275, 1770 (1997).

    Article  Google Scholar 

  6. P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998).

    Article  ADS  Google Scholar 

  7. P. Poulin, V. Cabuil, and D. A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).

    ADS  Google Scholar 

  8. P. Poulin, V. A. Raghunathan, P. Richetti, and D. Roux, J. Phys. I 4, 1557 (1994).

    Google Scholar 

  9. V. A. Raghunathan, P. Richetti, and D. Roux, Langmuir 12, 3789 (1996).

    Article  Google Scholar 

  10. V. A. Raghunathan et al., Mol. Cryst. Liq. Cryst. 288, 181 (1996).

    Google Scholar 

  11. B. I. Lev, H. M. Aoki, and H. Yokoyama, submitted to Phys. Rev. E.

  12. T. C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998).

    Article  ADS  Google Scholar 

  13. E. M. Terentjev, Phys. Rev. E 51, 1330 (1995).

    Article  ADS  Google Scholar 

  14. O. V. Kuksenok, R. W. Ruhwandl, S. V. Shiyanovskii, and E. M. Terentjev, Phys. Rev. E 54, 5198 (1996).

    Article  ADS  Google Scholar 

  15. R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 56, 5561 (1997).

    Article  ADS  Google Scholar 

  16. R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 55, 2958 (1997).

    Article  ADS  Google Scholar 

  17. H. Stark, submitted to Eur. Phys. J. B.

  18. H. Stark, J. Stelzer, and R. Bernhard, submitted to Eur. Phys. J. B.

  19. F. Brochard and P. G. de Gennes, J. Phys. (Paris) 31, 691 (1970).

    Google Scholar 

  20. B. J. Liang and S. H. Chen, Phys. Rev. A 39, 1441 (1989).

    Article  ADS  Google Scholar 

  21. S. V. Burylov and Yu. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 123 (1995); Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 1127 (1991).

    Google Scholar 

  22. S. V. Burylov and Yu. L. Raikher, J. Magn. Magn. Mater. 122, 62 (1993).

    Article  ADS  Google Scholar 

  23. S. Ramaswamy, R. Nityananda, V. A. Raghunathan, and J. Prost, Mol. Cryst. Liq. Cryst. 288, 175 (1996).

    Google Scholar 

  24. S. L. Lopatnikov and V. A. Namiot, Zh. Éksp. Teor. Fiz. 75, 361 (1978) [Sov. Phys. JETP 48, 180 (1978)].

    Google Scholar 

  25. S. V. Burylov and Yu. L. Raikher, Phys. Rev. E 50, 358 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 4, 2001, pp. 871–882.

Original English Text Copyright © 2001 by Chernyshuk, Lev, Yokoyama.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyshuk, S.B., Lev, B.I. & Yokoyama, H. Collective effects in doped nematic liquid crystals. J. Exp. Theor. Phys. 93, 760–770 (2001). https://doi.org/10.1134/1.1420444

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1420444

Keywords

Navigation