Skip to main content
Log in

The primary stages of the charge carrier photogeneration in C60 films studied by the 100-fs laser pulse pump-probe method

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The primary stages of photoinduced processes are studied in thin C60 films by the femtosecond laser pump-probe method. The films were excited by 100-fs laser pulses with photon energies above (wavelengths 345 and 367 nm) and below (645 nm) the mobility threshold, the fraction of excited molecules being no more than several percent. Upon probing in the spectral range from 400 to 1100 nm, several regions with substantially different decay kinetics were observed in the difference spectrum, which is caused by the simultaneous presence of several relaxing components. The appearance of the 465-and 500-nm bleaching bands in the difference spectrum upon excitation by photons with energies both above and below the mobility threshold, which are typical for electroabsorption spectra, suggests that charge carriers are produced in both these cases. The observed dependence of relaxation on the oxygen amount in the sample volume suggests that during excitation both charged (electrons and holes) and neutral (excited molecules) components are produced. The fraction of charged components is greater upon excitation into the fundamental band. The appearance of the 500-nm absorption band delayed by 10−13–10−14 s, the delay being increased in the presence of oxygen, was attributed to the formation of excited anions due to the capture of electrons by C60 molecules. It is concluded that upon excitation of the films by photons with the energy below the mobility threshold, charge carriers are produced due to two-photon absorption rather than due to singlet-singlet annihilation. When the films are excited by photons above the mobility threshold, the primary charge carriers are produced by direct optical excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Flom, R. Pong, F. J. Bartoli, and Z. H. Kafafi, Phys. Rev. B 46, 15598 (1992).

    Google Scholar 

  2. G. B. Talaparta, N. Manickam, M. Samoc, et al., J. Phys. Chem. 96, 5206 (1992).

    Google Scholar 

  3. M. J. Rosker, H. O. Marcy, T. Y. Chang, et al., Chem. Phys. Lett. 196, 427 (1992).

    Article  Google Scholar 

  4. W. Ji, S. H. Tang, G. Q. Xu, et al., J. Appl. Phys. 74, 3669 (1993).

    Article  ADS  Google Scholar 

  5. I. V. Bezel, S. V. Chekalin, Yu. A. Matveets, et al., Chem. Phys. Lett. 218, 475 (1994).

    Google Scholar 

  6. S. R. Flom, F. J. Bartoli, H. Sarkas, et al., Phys. Rev. B 51, 11376 (1995).

  7. L. Tutt and A. Kost, Nature 356, 225 (1992).

    Article  ADS  Google Scholar 

  8. J. Wray, K. Liu, C. Chen, et al., Appl. Phys. Lett. 64, 2785 (1994).

    Article  ADS  Google Scholar 

  9. P. Wurz, K. Lykke, et al., J. Phys. Chem. 96, 10129 (1992).

  10. D. Palit, A. Sapre, J. Mittal, and C. Rao, Chem. Phys. Lett. 195, 1 (1992).

    Article  Google Scholar 

  11. J. Arbogast, A. Darmanyan, C. Foote, et al., J. Phys. Chem. 95, 11 (1991).

    Article  Google Scholar 

  12. A. Hebard, M. Rosseinsky, R. Haddon, et al., Nature 350, 600 (1991).

    Article  ADS  Google Scholar 

  13. K. A. Wang, Nature 356, 585 (1992).

    ADS  Google Scholar 

  14. C. H. Lee, G. Yu, D. Moses, et al., Phys. Rev. B 48, 8506 (1993).

    ADS  Google Scholar 

  15. D. Moses, C. H. Lee, B. Kraabel, et al., Synth. Met. 70, 1419 (1995).

    Google Scholar 

  16. S. Kazaoui, R. Ross, and N. Minami, Phys. Rev. B 52, R11665 (1995).

  17. S. Priebe, B. Pietzak, and R. Konnenkamp, Appl. Phys. Lett. 71, 2160 (1997).

    Article  ADS  Google Scholar 

  18. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, in Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

    Google Scholar 

  19. E. A. Katz, V. Lyubin, D. Faiman, et al., Solid State Commun. 100, 781 (1996).

    Article  Google Scholar 

  20. R. A. Cheville and N. J. Halas, Phys. Rev. B 45, 4548 (1992).

    Article  ADS  Google Scholar 

  21. S. D. Brorson, M. K. Kelly, U. Wenschuh, et al., Phys. Rev. B 46, 7329 (1992).

    Article  ADS  Google Scholar 

  22. S. B. Fleischer, E. P. Ippen, G. Dresselhaus, et al., Appl. Phys. Lett. 62, 3241 (1993).

    Article  ADS  Google Scholar 

  23. T. Juhasz, X. H. Hu, C. Suarez, et al., Phys. Rev. B 48, 4929 (1993).

    ADS  Google Scholar 

  24. S. B. Fleisher, B. Pevzner, D. J. Dougherty, et al., Appl. Phys. Lett. 69, 296 (1996).

    ADS  Google Scholar 

  25. S. V. Chekalin, E. Akesson, V. Sundström, and V. M. Farztdinov, Pis’ma Zh. Éksp. Teor. Fiz. 58, 296 (1993) [JETP Lett. 58, 295 (1993)].

    Google Scholar 

  26. T. N. Thomas, R. A. Taylor, J. F. Ryan, et al., Europhys. Lett. 25, 403 (1994).

    Google Scholar 

  27. D. Dick, X. Wei, S. Jeglinski, et al., Phys. Rev. Lett. 73, 2760 (1994).

    Article  ADS  Google Scholar 

  28. V. M. Farztdinov, Yu. E. Lozovik, Yu. A. Matveets, et al., J. Phys. Chem. 98, 3290 (1994).

    Article  Google Scholar 

  29. T. W. Ebbesen, Y. Mochizuki, K. Tanigaki, and H. Hiura, Europhys. Lett. 25, 503 (1994).

    Google Scholar 

  30. S. L. Dexheimer, W. A. Vareka, D. Mittlemen, et al., Chem. Phys. Lett. 235, 552 (1995).

    Article  Google Scholar 

  31. S. V. Chekalin, in Fast Elementary Processes in Chemical and Biological System, Ed. by A. Tramer (American Inst. of Physics, Woodbury, 1996), AIP Conf. Proc. 364, 162 (1996).

    Google Scholar 

  32. S. V. Chekalin, in Femtochemistry. Ultrafast Chemical and Physical Processes in Molecular Systems, Ed. by M. Chergui (World Scientific, Singapore, 1996), p. 649.

    Google Scholar 

  33. V. M. Farztdinov, A. L. Dobryakov, N. R. Ernsting, et al., Phys. Rev. B 56, 4176 (1997).

    Article  ADS  Google Scholar 

  34. D. Boucher, S. V. Chekalin, S. A. Kovalenko, et al., Proc. SPIE 3239, 302 (1997).

    ADS  Google Scholar 

  35. V. Capozzi, G. Casamassima, G. F. Lorusso, et al., Solid State Commun. 98, 853 (1996).

    Article  Google Scholar 

  36. S. V. Chekalin, Appl. Phys. Lett. 71, 1276 (1997).

    Article  ADS  Google Scholar 

  37. P. Zhou, A. M. Rao, K. A. Wang, et al., Appl. Phys. Lett. 60, 2871 (1992).

    ADS  Google Scholar 

  38. M. Ichida, A. Nakamura, H. Shinohara, et al., Chem. Phys. Lett. 289, 579 (1998).

    Article  Google Scholar 

  39. J. Hora, P. Panek, K. Navratil, et al., Phys. Rev. B 54, 5106 (1996).

    Article  ADS  Google Scholar 

  40. K. Sinha, J. Menendez, R. C. Hanson, et al., Chem. Phys. Lett. 186, 287 (1991).

    Article  Google Scholar 

  41. X. Wei, Z. V. Vardeny, D. Moses, et al., Synth. Met. 49–50, 549 (1992).

    Google Scholar 

  42. B. C. Hess, D. V. Bowersox, S. H. Mardirosian, et al., Chem. Phys. Lett. 248, 141 (1996).

    Article  Google Scholar 

  43. L. Sebastian, G. Weiser, and H. Bassler, Chem. Phys. 61, 125 (1981).

    Article  Google Scholar 

  44. M. Knupfer and J. Fink, Phys. Rev. B 60, 10731 (1999).

  45. C. A. Reed and R. D. Bolskar, Chem. Rev. 100, 1075 (2000).

    Article  Google Scholar 

  46. C. C. Eloi, J. D. Robertson, A. M. Rao, et al., J. Mater. Res. 8, 3085 (1993).

    ADS  Google Scholar 

  47. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (Clarendon Press, Oxford, 1982).

    Google Scholar 

  48. E. I. Terukov, V. Yu. Davydov, and O. I. Kon’kov, Pis’ma Zh. Tekh. Fiz. 22(5), 71 (1996) [Tech. Phys. Lett. 22, 213 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 4, 2001, pp. 810–822.

Original Russian Text Copyright © 2001 by Chekalin, Yartsev, Sundström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekalin, S.V., Yartsev, A.P. & Sundström, V. The primary stages of the charge carrier photogeneration in C60 films studied by the 100-fs laser pulse pump-probe method. J. Exp. Theor. Phys. 93, 706–716 (2001). https://doi.org/10.1134/1.1420439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1420439

Keywords

Navigation