Skip to main content
Log in

Spiral magneto-electron waves in interstellar gas dynamics

  • Gravitation, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss possible observational consequences resulting from the propagation of transverse magneto-electron waves in the interstellar medium. We briefly describe a magnetohydrodynamic model for the cyclotron waves with emphasis on their analogy with hydrodynamic inertial waves. It is shown that the cyclotron waves are heavily damped in the interstellar medium and, therefore, cannot affect the gas dynamics of star-forming molecular clouds. We developed an analytical model of the helicoidal magneto-electron waves based on the electromagnetic induction equation for the magnetic flux density driven by the Hall and Ohmic components of the electric field generated by flows of thermal electrons. It is established that the helicons can propagate in the interstellar medium without any noticeable attenuation. The presented numerical estimates for the group velocity of the intercloud helicons suggest that spiral circularly polarized magneto-electron waves of this type can be responsible for the broadening of molecular lines detected from dark interstellar clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Lyne, R. N. Manchester, and J. H. Taylor, Mon. Not. R. Astron. Soc. 213, 613 (1985).

    ADS  Google Scholar 

  2. C. Heiles and S. B. Kulkarni, in Physical Processes in Interstellar Clouds, Ed. by E. Morfill and M. Scholer (Reidel, Dordrecht, 1987), p. 13.

    Google Scholar 

  3. C. Heiles, L. M. Haffner, R. M. Reynolds, and S. J. Tufte, Astrophys. J. 536, 335 (2000).

    Article  ADS  Google Scholar 

  4. C. Heiles, in Physics of the Gaseous and Stellar Discs of the Galaxy, Ed. by I. R. King, Astron. Soc. Pac. Conf. Ser. 66, 249 (1994).

  5. R. N. Manchester and J. H. Taylor, Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1995).

    Google Scholar 

  7. T. Ch. Mouschovias, in Physical Processes in Interstellar Clouds, Ed. by E. Morfill and M. Scholer (Reidel, Dordrecht, 1987), p. 491.

    Google Scholar 

  8. V. E. Golant, A. P. Zhilinskii, and I. E. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

    Google Scholar 

  9. O. K. Konstantinov and I. V. Perel’, Zh. Éksp. Teor. Fiz. 38, 161 (1960) [Sov. Phys. JETP 11, 117 (1960)].

    MathSciNet  Google Scholar 

  10. K. A. Kaner and V. G. Skobov, Usp. Fiz. Nauk 89, 367 (1966) [Sov. Phys. Usp. 9, 480 (1967)].

    Google Scholar 

  11. P. M. Platzmann and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, New York, 1970).

    Google Scholar 

  12. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon, Oxford, 1975).

    Google Scholar 

  13. G. K. Parks, Physics of Space Plasmas (Addison-Wesley, London, 1991).

    Google Scholar 

  14. P. Goldreich and A. Reisenegger, Astrophys. J. 395, 250 (1992).

    Article  ADS  Google Scholar 

  15. C. Thompson and R. C. Duncan, Astrophys. J. 473, 322 (1996).

    Article  ADS  Google Scholar 

  16. A. D. Kingsep, K. V. Chukbar, and V. V. Yan’kov, Fiz. Plazmy 16, 243 (1990) [Sov. J. Plasma Phys. 16, 136 (1990)].

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol.8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1995).

    Google Scholar 

  18. J. Arons and C. E. Max, Astrophys. J. Lett. 196, L77 (1975).

    Article  ADS  Google Scholar 

  19. P. C. Myers and A. Goodman, Astrophys. J. Lett. 326, L27 (1988).

    Article  ADS  Google Scholar 

  20. E. G. Zweibel and C. F. McKee, Astrophys. J. 440, 686 (1995).

    Article  ADS  Google Scholar 

  21. C. F. Gammie and E. C. Ostriker, Astrophys. J. 466, 814 (1996).

    Article  ADS  Google Scholar 

  22. P. Padoan and Å. Nordlund, Astrophys. J. 526, 279 (1999).

    Article  ADS  Google Scholar 

  23. W. Pillip, T. W. Hartquist, O. Havnes, and G. E. Morfill, Astrophys. J. 314, 341 (1987).

    ADS  Google Scholar 

  24. R. M. Crutcher, Astrophys. J. 520, 706 (1999).

    ADS  Google Scholar 

  25. J. Yang and S. I. Bastrukov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 577 (2000) [JETP Lett. 71, 395 (2000)].

    Google Scholar 

  26. S. I. Bastrukov and J. Yang, Astrophysics 43, 405 (2000).

    ADS  Google Scholar 

  27. R. V. Jones and L. Spitzer, Astrophys. J. 146, 943 (1967).

    ADS  Google Scholar 

  28. C. Norman and J. Heyvaerts, Astron. Astrophys. 147, 247 (1985).

    ADS  Google Scholar 

  29. M. Wardle, Mon. Not. R. Astron. Soc. 298, 507 (1998).

    Article  ADS  Google Scholar 

  30. M. Wardle and C. Ng, Mon. Not. R. Astron. Soc. 303, 249 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 120, No. 4, 2001, pp. 771–777.

Original English Text Copyright © 2001 by Bastrukov, Yang, Podgainy.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastrukov, S.I., Yang, J. & Podgainy, D.V. Spiral magneto-electron waves in interstellar gas dynamics. J. Exp. Theor. Phys. 93, 671–676 (2001). https://doi.org/10.1134/1.1420435

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1420435

Keywords

Navigation