Skip to main content
Log in

The nature of activation centers in Y2SiO5:Pr3+, Gd2SiO5:Pr3+, and Lu2SiO5:Pr3+ crystals

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A complex study of the energy spectra and relaxation channels for the excitation energy of activation centers in Y2SiO5:Pr3+, Lu2SiO5:Pr3+, and Gd2SiO5:Pr3+ was performed. An analysis of the low-temperature optical spectra showed that the energy parameters and the character of field splitting of the 1 D 2 and 3 H 4 activator ion terms were substantially different in crystals of different crystallographic types. The pseudosymmetry effect was observed in splitting of the 1 D 2 and 3 H 4 terms of Pr3+ ions situated in nonequivalent crystal lattice cation sites of Y2SiO5 and Lu2SiO5. Activator ions nonuniformly populated nonequivalent cation sites of the Y2SiO5 crystal lattice. At high activator ion concentrations (>1 at %), luminescence decay in Y2SiO5 could not be described by a simple exponential time dependence. The complex luminescence decay law was caused by activator ion excitation energy migration and capture by acceptors. The role of energy acceptors was played by activator ion dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Felsche, Struct. Bonding (Berlin) 13, 99 (1973).

  2. C. L. Melcher, R. A. Manente, C. A. Peterson, and J. S. Schweitzer, J. Cryst. Growth 128, 1001 (1993).

    Google Scholar 

  3. Physics and Spectroscopy of Crystals, Ed. by A. A. Kaminskii (Nauka, Moscow, 1986).

    Google Scholar 

  4. B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, Kristallografiya 15, 926 (1970) [Sov. Phys. Crystallogr. 15, 806 (1971)].

    Google Scholar 

  5. G. V. Anan’eva, A. M. Korovkin, T. I. Merkulyaeva, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 17, 1037 (1981).

    Google Scholar 

  6. C. L. Melcher and J. S. Schweitzer, IEEE Trans. Nucl. Sci. 39, 502 (1992).

    Article  Google Scholar 

  7. P. Dorenbos, C. W. E. van Eijk, A. J. J. Bos, and C. L. Melcher, J. Lumin. 60–61, 979 (1994).

    Google Scholar 

  8. H. Suzuki, T. A. Tombrello, C. L. Melcher, and J. S. Schweitzer, Nucl. Instrum. Methods Phys. Res. A 320, 263 (1992).

    Article  ADS  Google Scholar 

  9. G. Huber, E. Heumann, T. Sandrock, and K. Peterman, J. Lumin. 72–74, 1 (1997).

    Google Scholar 

  10. M. Malinowski, M. F. Joubert, and B. Jacquier, J. Lumin. 60–61, 179 (1994).

    Google Scholar 

  11. B. A. Maksimov, Yu. A. Kharitonov, V. V. Ilyukhin, and N. V. Belov, Dokl. Akad. Nauk SSSR 183, 1072 (1968) [Sov. Phys. Dokl. 13, 982 (1968)].

    Google Scholar 

  12. Yu. V. Malyukin, N. V. Znamenski, É. A. Manykin, et al., Fiz. Nizk. Temp. 24, 571 (1998) [Low Temp. Phys. 24, 432 (1998)].

    Google Scholar 

  13. K. Holliday, M. Croci, E. Vauthey, and U. P. Wild, Phys. Rev. B 47, 14741 (1993).

    Google Scholar 

  14. Yu. V. Malyukin, E. A. Manykin, N. I. Znamensky, and E. A. Petrenko, Zh. Éksp. Teor. Fiz. 115, 704 (1999) [JETP 88, 385 (1999)].

    Google Scholar 

  15. D. V. O’Connor and D. Phillipe, Time-correlated Single Photon Counting (Academy, New York, 1984).

    Google Scholar 

  16. H. H. Caspers, H. E. Rast, and R. A. Buchanan, J. Chem. Phys. 43, 2124 (1965).

    Article  Google Scholar 

  17. N. A. Kulagin and D. T. Sviridov, Computing Methods of Electronic Structures of Free and Impure Ions (Nauka, Moscow, 1986).

    Google Scholar 

  18. Spectroscopy of Solids Containing Rare Earth Ions, Ed. by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987).

    Google Scholar 

  19. I. B. Bersuker, Electron Structure and Properties of Coordination Compounds (Khimiya, Leningrad, 1986).

    Google Scholar 

  20. A. M. Stouneham, Theory of Defects in Solids: the Electronic Structure of Defects in Insulators and Semiconductors (Clarendon Press, xford, 1975; Mir, Moscow, 1979).

    Google Scholar 

  21. R. Hochstrasser, Molecular Aspects of Symmetry (Benjamin, New York, 1966; Mir, Moscow, 1969).

    Google Scholar 

  22. Spectroscopy and Excitation Dynamics in Condensed Molecular Systems, Ed. by V. M. Agranovich and R. M. Hochstrasser (North-Holland, Amsterdam, 1983; Nauka, Moscow, 1987).

    Google Scholar 

  23. M. J. Weber, Phys. Rev. B 4, 2932 (1971).

    ADS  Google Scholar 

  24. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Nauka, Moscow, 1978; North-Holland, Amsterdam, 1982).

    Google Scholar 

  25. M. Nikl, J. A. Mares, E. Minokova, and K. Blazek, J. Lumin. 60–61, 971 (1994).

    Google Scholar 

  26. X. X. Zhang, P. Hong, M. Bass, et al., J. Lumin. 60–61, 878 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 120, No. 2, 2001, pp. 420–429.

Original Russian Text Copyright © 2001 by Znamenski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Manykin, Orlov, Petrenko, Yukina, Malyukin, Borisov, Zhmurin, Lebedenko, Grinev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Znamenskii, N.V., Manykin, É.A., Orlov, Y.V. et al. The nature of activation centers in Y2SiO5:Pr3+, Gd2SiO5:Pr3+, and Lu2SiO5:Pr3+ crystals. J. Exp. Theor. Phys. 93, 372–379 (2001). https://doi.org/10.1134/1.1402737

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1402737

Keywords

Navigation